More api cleanups.

This commit is contained in:
Relintai 2023-04-22 17:17:58 +02:00
parent da7659860a
commit 1823ffe616
59 changed files with 704 additions and 2406 deletions

View File

@ -78,7 +78,7 @@ void MLPPANN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ComputeGradientsResult grads = compute_gradients(_y_hat, _output_set);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiplynvt(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.output_w_grad = alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad);
update_parameters(grads.cumulative_hidden_layer_w_grad, grads.output_w_grad, learning_rate); // subject to change. may want bias to have this matrix too.
@ -136,7 +136,7 @@ void MLPPANN::sgd(real_t learning_rate, int max_epoch, bool ui) {
ComputeGradientsResult grads = compute_gradients(y_hat_row_tmp, output_set_row_tmp);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiplynvt(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.output_w_grad = alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad);
update_parameters(grads.cumulative_hidden_layer_w_grad, grads.output_w_grad, learning_rate); // subject to change. may want bias to have this matrix too.
@ -183,7 +183,7 @@ void MLPPANN::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, boo
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiplynvt(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.output_w_grad = alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad);
update_parameters(grads.cumulative_hidden_layer_w_grad, grads.output_w_grad, learning_rate); // subject to change. may want bias to have this matrix too.
@ -238,7 +238,7 @@ void MLPPANN::momentum(real_t learning_rate, int max_epoch, int mini_batch_size,
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resizenvt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (v_output->size() == 0) {
@ -249,7 +249,7 @@ void MLPPANN::momentum(real_t learning_rate, int max_epoch, int mini_batch_size,
update_parameters(v_hidden, v_output, 0); // DON'T update bias.
}
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(gamma, v_hidden), alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.additionnvt(alg.scalar_multiplynvt(gamma, v_hidden), alg.scalar_multiplynvt(learning_rate / _n, grads.cumulative_hidden_layer_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(gamma, v_output), alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad));
update_parameters(v_hidden, v_output, learning_rate); // subject to change. may want bias to have this matrix too.
@ -304,17 +304,17 @@ void MLPPANN::adagrad(real_t learning_rate, int max_epoch, int mini_batch_size,
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resizenvt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (v_output->size() == 0) {
v_output->resize(grads.output_w_grad->size());
}
v_hidden = alg.addition_vt(v_hidden, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2));
v_hidden = alg.additionnvt(v_hidden, alg.exponentiatenvt(grads.cumulative_hidden_layer_w_grad, 2));
v_output = alg.additionnv(v_output, alg.exponentiatenv(grads.output_w_grad, 2));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_divisionnv_vt(grads.cumulative_hidden_layer_w_grad, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden))));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiplynvt(learning_rate / _n, alg.element_wise_divisionnvnvt(grads.cumulative_hidden_layer_w_grad, alg.scalar_addnvt(e, alg.sqrtnvt(v_hidden))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_divisionnv(grads.output_w_grad, alg.scalar_addnv(e, alg.sqrtnv(v_output))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
@ -368,17 +368,17 @@ void MLPPANN::adadelta(real_t learning_rate, int max_epoch, int mini_batch_size,
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resizenvt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (v_output->size() == 0) {
v_output->resize(grads.output_w_grad->size());
}
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(1 - b1, v_hidden), alg.scalar_multiply_vm(b1, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
v_hidden = alg.additionnvt(alg.scalar_multiplynvt(1 - b1, v_hidden), alg.scalar_multiplynvt(b1, alg.exponentiatenvt(grads.cumulative_hidden_layer_w_grad, 2)));
v_output = alg.additionnv(v_output, alg.exponentiatenv(grads.output_w_grad, 2));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_divisionnv_vt(grads.cumulative_hidden_layer_w_grad, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden))));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiplynvt(learning_rate / _n, alg.element_wise_divisionnvnvt(grads.cumulative_hidden_layer_w_grad, alg.scalar_addnvt(e, alg.sqrtnvt(v_hidden))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_divisionnv(grads.output_w_grad, alg.scalar_addnv(e, alg.sqrtnv(v_output))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
@ -435,8 +435,8 @@ void MLPPANN::adam(real_t learning_rate, int max_epoch, int mini_batch_size, rea
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
m_hidden = alg.resizenvt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resizenvt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && v_output->size()) {
@ -444,19 +444,19 @@ void MLPPANN::adam(real_t learning_rate, int max_epoch, int mini_batch_size, rea
v_output->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(b2, v_hidden), alg.scalar_multiply_vm(1 - b2, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
m_hidden = alg.additionnvt(alg.scalar_multiplynvt(b1, m_hidden), alg.scalar_multiplynvt(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.additionnvt(alg.scalar_multiplynvt(b2, v_hidden), alg.scalar_multiplynvt(1 - b2, alg.exponentiatenvt(grads.cumulative_hidden_layer_w_grad, 2)));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(b2, v_output), alg.scalar_multiplynv(1 - b2, alg.exponentiatenv(grads.output_w_grad, 2)));
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiply_vm(1 / (1 - Math::pow(b1, epoch)), m_hidden);
Vector<Ref<MLPPMatrix>> v_hidden_hat = alg.scalar_multiply_vm(1 / (1 - Math::pow(b2, epoch)), v_hidden);
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiplynvt(1 / (1 - Math::pow(b1, epoch)), m_hidden);
Vector<Ref<MLPPMatrix>> v_hidden_hat = alg.scalar_multiplynvt(1 / (1 - Math::pow(b2, epoch)), v_hidden);
Ref<MLPPVector> m_output_hat = alg.scalar_multiplynv(1 / (1 - Math::pow(b1, epoch)), m_output);
Ref<MLPPVector> v_output_hat = alg.scalar_multiplynv(1 / (1 - Math::pow(b2, epoch)), v_output);
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_divisionnv_vt(m_hidden_hat, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden_hat))));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiplynvt(learning_rate / _n, alg.element_wise_divisionnvnvt(m_hidden_hat, alg.scalar_addnvt(e, alg.sqrtnvt(v_hidden_hat))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_divisionnv(m_output_hat, alg.scalar_addnv(e, alg.sqrtnv(v_output_hat))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
@ -510,8 +510,8 @@ void MLPPANN::adamax(real_t learning_rate, int max_epoch, int mini_batch_size, r
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && u_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
u_hidden = alg.resize_vt(u_hidden, grads.cumulative_hidden_layer_w_grad);
m_hidden = alg.resizenvt(m_hidden, grads.cumulative_hidden_layer_w_grad);
u_hidden = alg.resizenvt(u_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && u_output->size() == 0) {
@ -519,17 +519,17 @@ void MLPPANN::adamax(real_t learning_rate, int max_epoch, int mini_batch_size, r
u_output->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
u_hidden = alg.max_vt(alg.scalar_multiply_vm(b2, u_hidden), alg.abs_vt(grads.cumulative_hidden_layer_w_grad));
m_hidden = alg.additionnvt(alg.scalar_multiplynvt(b1, m_hidden), alg.scalar_multiplynvt(1 - b1, grads.cumulative_hidden_layer_w_grad));
u_hidden = alg.maxnvt(alg.scalar_multiplynvt(b2, u_hidden), alg.absnvt(grads.cumulative_hidden_layer_w_grad));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
u_output = alg.maxnvv(alg.scalar_multiplynv(b2, u_output), alg.absv(grads.output_w_grad));
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiply_vm(1 / (1 - Math::pow(b1, epoch)), m_hidden);
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiplynvt(1 / (1 - Math::pow(b1, epoch)), m_hidden);
Ref<MLPPVector> m_output_hat = alg.scalar_multiplynv(1 / (1 - Math::pow(b1, epoch)), m_output);
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_divisionnv_vt(m_hidden_hat, alg.scalar_add_vm(e, u_hidden)));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiplynvt(learning_rate / _n, alg.element_wise_divisionnvnvt(m_hidden_hat, alg.scalar_addnvt(e, u_hidden)));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_divisionnv(m_output_hat, alg.scalar_addnv(e, u_output)));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
@ -583,8 +583,8 @@ void MLPPANN::nadam(real_t learning_rate, int max_epoch, int mini_batch_size, re
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
m_hidden = alg.resizenvt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resizenvt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && v_output->size() == 0) {
@ -592,21 +592,21 @@ void MLPPANN::nadam(real_t learning_rate, int max_epoch, int mini_batch_size, re
v_output->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(b2, v_hidden), alg.scalar_multiply_vm(1 - b2, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
m_hidden = alg.additionnvt(alg.scalar_multiplynvt(b1, m_hidden), alg.scalar_multiplynvt(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.additionnvt(alg.scalar_multiplynvt(b2, v_hidden), alg.scalar_multiplynvt(1 - b2, alg.exponentiatenvt(grads.cumulative_hidden_layer_w_grad, 2)));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(b2, v_output), alg.scalar_multiplynv(1 - b2, alg.exponentiatenv(grads.output_w_grad, 2)));
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiply_vm(1 / (1.0 - Math::pow(b1, epoch)), m_hidden);
Vector<Ref<MLPPMatrix>> v_hidden_hat = alg.scalar_multiply_vm(1 / (1.0 - Math::pow(b2, epoch)), v_hidden);
Vector<Ref<MLPPMatrix>> m_hidden_final = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden_hat), alg.scalar_multiply_vm((1 - b1) / (1 - Math::pow(b1, epoch)), grads.cumulative_hidden_layer_w_grad));
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiplynvt(1 / (1.0 - Math::pow(b1, epoch)), m_hidden);
Vector<Ref<MLPPMatrix>> v_hidden_hat = alg.scalar_multiplynvt(1 / (1.0 - Math::pow(b2, epoch)), v_hidden);
Vector<Ref<MLPPMatrix>> m_hidden_final = alg.additionnvt(alg.scalar_multiplynvt(b1, m_hidden_hat), alg.scalar_multiplynvt((1 - b1) / (1 - Math::pow(b1, epoch)), grads.cumulative_hidden_layer_w_grad));
Ref<MLPPVector> m_output_hat = alg.scalar_multiplynv(1 / (1.0 - Math::pow(b1, epoch)), m_output);
Ref<MLPPVector> v_output_hat = alg.scalar_multiplynv(1 / (1.0 - Math::pow(b2, epoch)), v_output);
Ref<MLPPVector> m_output_final = alg.additionnv(alg.scalar_multiplynv(b1, m_output_hat), alg.scalar_multiplynv((1 - b1) / (1.0 - Math::pow(b1, epoch)), grads.output_w_grad));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_divisionnv_vt(m_hidden_final, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden_hat))));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiplynvt(learning_rate / _n, alg.element_wise_divisionnvnvt(m_hidden_final, alg.scalar_addnvt(e, alg.sqrtnvt(v_hidden_hat))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_divisionnvnm(m_output_final, alg.scalar_addnv(e, alg.sqrtnv(v_output_hat))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
@ -666,9 +666,9 @@ void MLPPANN::amsgrad(real_t learning_rate, int max_epoch, int mini_batch_size,
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden_hat = alg.resize_vt(v_hidden_hat, grads.cumulative_hidden_layer_w_grad);
m_hidden = alg.resizenvt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resizenvt(v_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden_hat = alg.resizenvt(v_hidden_hat, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && v_output->size() == 0) {
@ -677,16 +677,16 @@ void MLPPANN::amsgrad(real_t learning_rate, int max_epoch, int mini_batch_size,
v_output_hat->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(b2, v_hidden), alg.scalar_multiply_vm(1 - b2, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
m_hidden = alg.additionnvt(alg.scalar_multiplynvt(b1, m_hidden), alg.scalar_multiplynvt(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.additionnvt(alg.scalar_multiplynvt(b2, v_hidden), alg.scalar_multiplynvt(1 - b2, alg.exponentiatenvt(grads.cumulative_hidden_layer_w_grad, 2)));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(b2, v_output), alg.scalar_multiplynv(1 - b2, alg.exponentiatenv(grads.output_w_grad, 2)));
v_hidden_hat = alg.max_vt(v_hidden_hat, v_hidden);
v_hidden_hat = alg.maxnvt(v_hidden_hat, v_hidden);
v_output_hat = alg.maxnvv(v_output_hat, v_output);
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_divisionnv_vt(m_hidden, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden_hat))));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiplynvt(learning_rate / _n, alg.element_wise_divisionnvnvt(m_hidden, alg.scalar_addnvt(e, alg.sqrtnvt(v_hidden_hat))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_divisionnv(m_output, alg.scalar_addnv(e, alg.sqrtnv(v_output_hat))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.

View File

@ -6,9 +6,9 @@
#include "ann_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <cmath>
@ -61,7 +61,6 @@ real_t MLPPANNOld::modelTest(std::vector<real_t> x) {
}
void MLPPANNOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
int epoch = 1;
@ -97,7 +96,6 @@ void MLPPANNOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPANNOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -138,7 +136,6 @@ void MLPPANNOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPANNOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -183,7 +180,6 @@ void MLPPANNOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
}
void MLPPANNOld::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -245,7 +241,6 @@ void MLPPANNOld::Momentum(real_t learning_rate, int max_epoch, int mini_batch_si
}
void MLPPANNOld::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -306,7 +301,6 @@ void MLPPANNOld::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_siz
}
void MLPPANNOld::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -367,7 +361,6 @@ void MLPPANNOld::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_si
}
void MLPPANNOld::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -440,7 +433,6 @@ void MLPPANNOld::Adam(real_t learning_rate, int max_epoch, int mini_batch_size,
}
void MLPPANNOld::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -511,7 +503,6 @@ void MLPPANNOld::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size
}
void MLPPANNOld::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -586,7 +577,6 @@ void MLPPANNOld::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size,
}
void MLPPANNOld::AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
@ -726,8 +716,8 @@ void MLPPANNOld::addOutputLayer(std::string activation, std::string loss, std::s
}
real_t MLPPANNOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
@ -775,10 +765,10 @@ void MLPPANNOld::updateParameters(std::vector<std::vector<std::vector<real_t>>>
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPANNOld::computeGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
// std::cout << "BEGIN" << std::endl;
class MLPPCost cost;
class MLPPCostOld cost;
MLPPActivationOld avn;
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.

View File

@ -7,8 +7,8 @@
#include "auto_encoder_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -24,7 +24,7 @@ std::vector<real_t> MLPPAutoEncoderOld::modelTest(std::vector<real_t> x) {
void MLPPAutoEncoderOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -77,7 +77,7 @@ void MLPPAutoEncoderOld::gradientDescent(real_t learning_rate, int max_epoch, bo
void MLPPAutoEncoderOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
int epoch = 1;
@ -131,7 +131,7 @@ void MLPPAutoEncoderOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPAutoEncoderOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
int epoch = 1;
@ -219,12 +219,12 @@ MLPPAutoEncoderOld::MLPPAutoEncoderOld(std::vector<std::vector<real_t>> pinputSe
}
real_t MLPPAutoEncoderOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
class MLPPCost cost;
class MLPPCostOld cost;
return cost.MSE(y_hat, inputSet);
}
std::vector<std::vector<real_t>> MLPPAutoEncoderOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
@ -232,7 +232,7 @@ std::vector<std::vector<real_t>> MLPPAutoEncoderOld::Evaluate(std::vector<std::v
}
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPAutoEncoderOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
@ -240,7 +240,7 @@ std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> M
}
std::vector<real_t> MLPPAutoEncoderOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
@ -248,7 +248,7 @@ std::vector<real_t> MLPPAutoEncoderOld::Evaluate(std::vector<real_t> x) {
}
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPAutoEncoderOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
@ -256,7 +256,7 @@ std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPAutoEncoderOld::propaga
}
void MLPPAutoEncoderOld::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1);
a2 = avn.sigmoid(z2);

View File

@ -6,7 +6,7 @@
#include "bernoulli_nb_old.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -77,7 +77,7 @@ real_t MLPPBernoulliNBOld::score() {
}
void MLPPBernoulliNBOld::computeVocab() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
vocab = data.vecToSet<real_t>(alg.flatten(inputSet));
}

View File

@ -7,9 +7,9 @@
#include "c_log_log_reg_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -32,8 +32,8 @@ real_t MLPPCLogLogRegOld::modelTest(std::vector<real_t> x) {
void MLPPCLogLogRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -66,8 +66,8 @@ void MLPPCLogLogRegOld::gradientDescent(real_t learning_rate, int max_epoch, boo
void MLPPCLogLogRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -97,8 +97,8 @@ void MLPPCLogLogRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPCLogLogRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -139,8 +139,8 @@ void MLPPCLogLogRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPCLogLogRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -188,30 +188,30 @@ real_t MLPPCLogLogRegOld::score() {
}
real_t MLPPCLogLogRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPCLogLogRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.cloglog(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
std::vector<real_t> MLPPCLogLogRegOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
real_t MLPPCLogLogRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.cloglog(alg.dot(weights, x) + bias);
}
real_t MLPPCLogLogRegOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.dot(weights, x) + bias;
}

View File

@ -10,6 +10,7 @@
#include <cmath>
#include <iostream>
/*
std::vector<std::vector<real_t>> MLPPConvolutions::convolve_2d(std::vector<std::vector<real_t>> input, std::vector<std::vector<real_t>> filter, int S, int P) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> feature_map;
@ -219,12 +220,12 @@ std::vector<std::vector<real_t>> MLPPConvolutions::gaussian_filter_2d(int size,
return filter;
}
/*
Indeed a filter could have been used for this purpose, but I decided that it would've just
been easier to carry out the calculation explicitly, mainly because it is more informative,
and also because my convolution algorithm is only built for filters with equally sized
heights and widths.
*/
// Indeed a filter could have been used for this purpose, but I decided that it would've just
// been easier to carry out the calculation explicitly, mainly because it is more informative,
// and also because my convolution algorithm is only built for filters with equally sized
// heights and widths.
std::vector<std::vector<real_t>> MLPPConvolutions::dx(std::vector<std::vector<real_t>> input) {
std::vector<std::vector<real_t>> deriv; // We assume a gray scale image.
deriv.resize(input.size());
@ -360,8 +361,10 @@ std::vector<std::vector<real_t>> MLPPConvolutions::get_roberts_horizontal() {
std::vector<std::vector<real_t>> MLPPConvolutions::get_roberts_vertical() {
return _roberts_vertical;
}
*/
MLPPConvolutions::MLPPConvolutions() {
/*
_prewitt_horizontal = { { 1, 1, 1 }, { 0, 0, 0 }, { -1, -1, -1 } };
_prewitt_vertical = { { 1, 0, -1 }, { 1, 0, -1 }, { 1, 0, -1 } };
_sobel_horizontal = { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } };
@ -370,6 +373,7 @@ MLPPConvolutions::MLPPConvolutions() {
_scharr_vertical = { { 3, 0, -3 }, { 10, 0, -10 }, { 3, 0, -3 } };
_roberts_horizontal = { { 0, 1 }, { -1, 0 } };
_roberts_vertical = { { 1, 0 }, { 0, -1 } };
*/
}
void MLPPConvolutions::_bind_methods() {

View File

@ -13,6 +13,7 @@ class MLPPConvolutions : public Reference {
GDCLASS(MLPPConvolutions, Reference);
public:
/*
std::vector<std::vector<real_t>> convolve_2d(std::vector<std::vector<real_t>> input, std::vector<std::vector<real_t>> filter, int S, int P = 0);
std::vector<std::vector<std::vector<real_t>>> convolve_3d(std::vector<std::vector<std::vector<real_t>>> input, std::vector<std::vector<std::vector<real_t>>> filter, int S, int P = 0);
@ -42,12 +43,14 @@ public:
std::vector<std::vector<real_t>> get_scharr_vertical();
std::vector<std::vector<real_t>> get_roberts_horizontal();
std::vector<std::vector<real_t>> get_roberts_vertical();
*/
MLPPConvolutions();
protected:
static void _bind_methods();
/*
std::vector<std::vector<real_t>> _prewitt_horizontal;
std::vector<std::vector<real_t>> _prewitt_vertical;
std::vector<std::vector<real_t>> _sobel_horizontal;
@ -56,6 +59,7 @@ protected:
std::vector<std::vector<real_t>> _scharr_vertical;
std::vector<std::vector<real_t>> _roberts_horizontal;
std::vector<std::vector<real_t>> _roberts_vertical;
*/
};
#endif // Convolutions_hpp

View File

@ -6,13 +6,13 @@
#include "../convolutions/convolutions_old.h"
#include "../lin_alg/lin_alg.h"
#include "../stat/stat.h"
#include "../lin_alg/lin_alg_old.h"
#include "../stat/stat_old.h"
#include <cmath>
#include <iostream>
std::vector<std::vector<real_t>> MLPPConvolutionsOld::convolve_2d(std::vector<std::vector<real_t>> input, std::vector<std::vector<real_t>> filter, int S, int P) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> feature_map;
uint32_t N = input.size();
uint32_t F = filter.size();
@ -68,7 +68,7 @@ std::vector<std::vector<real_t>> MLPPConvolutionsOld::convolve_2d(std::vector<st
}
std::vector<std::vector<std::vector<real_t>>> MLPPConvolutionsOld::convolve_3d(std::vector<std::vector<std::vector<real_t>>> input, std::vector<std::vector<std::vector<real_t>>> filter, int S, int P) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> feature_map;
uint32_t N = input[0].size();
uint32_t F = filter[0].size();
@ -134,7 +134,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPConvolutionsOld::convolve_3d(s
}
std::vector<std::vector<real_t>> MLPPConvolutionsOld::pool_2d(std::vector<std::vector<real_t>> input, int F, int S, std::string type) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> pooled_map;
uint32_t N = input.size();
uint32_t map_size = floor((N - F) / S + 1);
@ -161,7 +161,7 @@ std::vector<std::vector<real_t>> MLPPConvolutionsOld::pool_2d(std::vector<std::v
}
}
if (type == "Average") {
MLPPStat stat;
MLPPStatOld stat;
pooled_map[i][j] = stat.mean(pooling_input);
} else if (type == "Min") {
pooled_map[i][j] = alg.min(pooling_input);
@ -182,9 +182,9 @@ std::vector<std::vector<std::vector<real_t>>> MLPPConvolutionsOld::pool_3d(std::
}
real_t MLPPConvolutionsOld::global_pool_2d(std::vector<std::vector<real_t>> input, std::string type) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (type == "Average") {
MLPPStat stat;
MLPPStatOld stat;
return stat.mean(alg.flatten(input));
} else if (type == "Min") {
return alg.min(alg.flatten(input));
@ -269,7 +269,7 @@ std::vector<std::vector<real_t>> MLPPConvolutionsOld::dy(std::vector<std::vector
}
std::vector<std::vector<real_t>> MLPPConvolutionsOld::grad_magnitude(std::vector<std::vector<real_t>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> x_deriv_2 = alg.hadamard_product(dx(input), dx(input));
std::vector<std::vector<real_t>> y_deriv_2 = alg.hadamard_product(dy(input), dy(input));
return alg.sqrt(alg.addition(x_deriv_2, y_deriv_2));
@ -298,7 +298,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPConvolutionsOld::compute_m(std
real_t const GAUSSIAN_PADDING = ((input.size() - 1) + GAUSSIAN_SIZE - input.size()) / 2; // Convs must be same.
std::cout << GAUSSIAN_PADDING << std::endl;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> x_deriv = dx(input);
std::vector<std::vector<real_t>> y_deriv = dy(input);
@ -312,7 +312,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPConvolutionsOld::compute_m(std
}
std::vector<std::vector<std::string>> MLPPConvolutionsOld::harris_corner_detection(std::vector<std::vector<real_t>> input) {
real_t const k = 0.05; // Empirically determined wherein k -> [0.04, 0.06], though conventionally 0.05 is typically used as well.
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> M = compute_m(input);
std::vector<std::vector<real_t>> det = alg.subtraction(alg.hadamard_product(M[0], M[1]), alg.hadamard_product(M[2], M[2]));
std::vector<std::vector<real_t>> trace = alg.addition(M[0], M[1]);

View File

@ -763,401 +763,6 @@ Ref<MLPPMatrix> MLPPCost::run_cost_deriv_matrix(const CostTypes cost, const Ref<
}
}
// ====== OLD ======
real_t MLPPCost::MSE(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]);
}
return sum / 2 * y_hat.size();
}
real_t MLPPCost::MSE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]);
}
}
return sum / 2 * y_hat.size();
}
std::vector<real_t> MLPPCost::MSEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
return alg.subtraction(y_hat, y);
}
std::vector<std::vector<real_t>> MLPPCost::MSEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
return alg.subtraction(y_hat, y);
}
real_t MLPPCost::RMSE(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]);
}
return sqrt(sum / y_hat.size());
}
real_t MLPPCost::RMSE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]);
}
}
return sqrt(sum / y_hat.size());
}
std::vector<real_t> MLPPCost::RMSEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
return alg.scalarMultiply(1 / (2 * sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
}
std::vector<std::vector<real_t>> MLPPCost::RMSEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
return alg.scalarMultiply(1 / (2 / sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
}
real_t MLPPCost::MAE(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += abs((y_hat[i] - y[i]));
}
return sum / y_hat.size();
}
real_t MLPPCost::MAE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += abs((y_hat[i][j] - y[i][j]));
}
}
return sum / y_hat.size();
}
std::vector<real_t> MLPPCost::MAEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
std::vector<real_t> deriv;
deriv.resize(y_hat.size());
for (uint32_t i = 0; i < deriv.size(); i++) {
if (y_hat[i] < 0) {
deriv[i] = -1;
} else if (y_hat[i] == 0) {
deriv[i] = 0;
} else {
deriv[i] = 1;
}
}
return deriv;
}
std::vector<std::vector<real_t>> MLPPCost::MAEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(y_hat.size());
for (uint32_t i = 0; i < deriv.size(); i++) {
deriv.resize(y_hat[i].size());
}
for (uint32_t i = 0; i < deriv.size(); i++) {
for (uint32_t j = 0; j < deriv[i].size(); j++) {
if (y_hat[i][j] < 0) {
deriv[i][j] = -1;
} else if (y_hat[i][j] == 0) {
deriv[i][j] = 0;
} else {
deriv[i][j] = 1;
}
}
}
return deriv;
}
real_t MLPPCost::MBE(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += (y_hat[i] - y[i]);
}
return sum / y_hat.size();
}
real_t MLPPCost::MBE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += (y_hat[i][j] - y[i][j]);
}
}
return sum / y_hat.size();
}
std::vector<real_t> MLPPCost::MBEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
return alg.onevec(y_hat.size());
}
std::vector<std::vector<real_t>> MLPPCost::MBEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
return alg.onemat(y_hat.size(), y_hat[0].size());
}
real_t MLPPCost::LogLoss(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
real_t eps = 1e-8;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += -(y[i] * std::log(y_hat[i] + eps) + (1 - y[i]) * std::log(1 - y_hat[i] + eps));
}
return sum / y_hat.size();
}
real_t MLPPCost::LogLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
real_t eps = 1e-8;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += -(y[i][j] * std::log(y_hat[i][j] + eps) + (1 - y[i][j]) * std::log(1 - y_hat[i][j] + eps));
}
}
return sum / y_hat.size();
}
std::vector<real_t> MLPPCost::LogLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
}
std::vector<std::vector<real_t>> MLPPCost::LogLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
}
real_t MLPPCost::CrossEntropy(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += y[i] * std::log(y_hat[i]);
}
return -1 * sum;
}
real_t MLPPCost::CrossEntropy(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += y[i][j] * std::log(y_hat[i][j]);
}
}
return -1 * sum;
}
std::vector<real_t> MLPPCost::CrossEntropyDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
}
std::vector<std::vector<real_t>> MLPPCost::CrossEntropyDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
}
real_t MLPPCost::HuberLoss(std::vector<real_t> y_hat, std::vector<real_t> y, real_t delta) {
MLPPLinAlg alg;
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
if (abs(y[i] - y_hat[i]) <= delta) {
sum += (y[i] - y_hat[i]) * (y[i] - y_hat[i]);
} else {
sum += 2 * delta * abs(y[i] - y_hat[i]) - delta * delta;
}
}
return sum;
}
real_t MLPPCost::HuberLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t delta) {
MLPPLinAlg alg;
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
if (abs(y[i][j] - y_hat[i][j]) <= delta) {
sum += (y[i][j] - y_hat[i][j]) * (y[i][j] - y_hat[i][j]);
} else {
sum += 2 * delta * abs(y[i][j] - y_hat[i][j]) - delta * delta;
}
}
}
return sum;
}
std::vector<real_t> MLPPCost::HuberLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y, real_t delta) {
MLPPLinAlg alg;
std::vector<real_t> deriv;
deriv.resize(y_hat.size());
for (uint32_t i = 0; i < y_hat.size(); i++) {
if (abs(y[i] - y_hat[i]) <= delta) {
deriv.push_back(-(y[i] - y_hat[i]));
} else {
if (y_hat[i] > 0 || y_hat[i] < 0) {
deriv.push_back(2 * delta * (y_hat[i] / abs(y_hat[i])));
} else {
deriv.push_back(0);
}
}
}
return deriv;
}
std::vector<std::vector<real_t>> MLPPCost::HuberLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t delta) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> deriv;
deriv.resize(y_hat.size());
for (uint32_t i = 0; i < deriv.size(); i++) {
deriv[i].resize(y_hat[i].size());
}
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
if (abs(y[i][j] - y_hat[i][j]) <= delta) {
deriv[i].push_back(-(y[i][j] - y_hat[i][j]));
} else {
if (y_hat[i][j] > 0 || y_hat[i][j] < 0) {
deriv[i].push_back(2 * delta * (y_hat[i][j] / abs(y_hat[i][j])));
} else {
deriv[i].push_back(0);
}
}
}
}
return deriv;
}
real_t MLPPCost::HingeLoss(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += fmax(0, 1 - y[i] * y_hat[i]);
}
return sum / y_hat.size();
}
real_t MLPPCost::HingeLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += fmax(0, 1 - y[i][j] * y_hat[i][j]);
}
}
return sum / y_hat.size();
}
std::vector<real_t> MLPPCost::HingeLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
std::vector<real_t> deriv;
deriv.resize(y_hat.size());
for (uint32_t i = 0; i < y_hat.size(); i++) {
if (1 - y[i] * y_hat[i] > 0) {
deriv[i] = -y[i];
} else {
deriv[i] = 0;
}
}
return deriv;
}
std::vector<std::vector<real_t>> MLPPCost::HingeLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
std::vector<std::vector<real_t>> deriv;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
if (1 - y[i][j] * y_hat[i][j] > 0) {
deriv[i][j] = -y[i][j];
} else {
deriv[i][j] = 0;
}
}
}
return deriv;
}
real_t MLPPCost::WassersteinLoss(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
sum += y_hat[i] * y[i];
}
return -sum / y_hat.size();
}
real_t MLPPCost::WassersteinLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
sum += y_hat[i][j] * y[i][j];
}
}
return -sum / y_hat.size();
}
std::vector<real_t> MLPPCost::WassersteinLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, y); // Simple.
}
std::vector<std::vector<real_t>> MLPPCost::WassersteinLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, y); // Simple.
}
real_t MLPPCost::HingeLoss(std::vector<real_t> y_hat, std::vector<real_t> y, std::vector<real_t> weights, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
}
real_t MLPPCost::HingeLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, std::vector<std::vector<real_t>> weights, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
}
std::vector<real_t> MLPPCost::HingeLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
}
std::vector<std::vector<real_t>> MLPPCost::HingeLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
}
real_t MLPPCost::dualFormSVM(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y.
std::vector<std::vector<real_t>> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations.
std::vector<std::vector<real_t>> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y);
real_t alphaQ = alg.matmult(alg.matmult({ alpha }, Q), alg.transpose({ alpha }))[0][0];
std::vector<real_t> one = alg.onevec(alpha.size());
return -alg.dot(one, alpha) + 0.5 * alphaQ;
}
std::vector<real_t> MLPPCost::dualFormSVMDeriv(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> Y = alg.zeromat(y.size(), y.size());
for (uint32_t i = 0; i < y.size(); i++) {
Y[i][i] = y[i]; // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y.
}
std::vector<std::vector<real_t>> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations.
std::vector<std::vector<real_t>> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y);
std::vector<real_t> alphaQDeriv = alg.mat_vec_mult(Q, alpha);
std::vector<real_t> one = alg.onevec(alpha.size());
return alg.subtraction(alphaQDeriv, one);
}
void MLPPCost::_bind_methods() {
ClassDB::bind_method(D_METHOD("msev", "y_hat", "y"), &MLPPCost::msev);
ClassDB::bind_method(D_METHOD("msem", "y_hat", "y"), &MLPPCost::msem);

View File

@ -119,72 +119,6 @@ public:
Ref<MLPPVector> run_cost_deriv_vector(const CostTypes cost, const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y);
Ref<MLPPMatrix> run_cost_deriv_matrix(const CostTypes cost, const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y);
// Regression Costs
real_t MSE(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t MSE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> MSEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> MSEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
real_t RMSE(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t RMSE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> RMSEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> RMSEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
real_t MAE(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t MAE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> MAEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> MAEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
real_t MBE(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t MBE(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> MBEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> MBEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
// Classification Costs
real_t LogLoss(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t LogLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> LogLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> LogLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
real_t CrossEntropy(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t CrossEntropy(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> CrossEntropyDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> CrossEntropyDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
real_t HuberLoss(std::vector<real_t> y_hat, std::vector<real_t> y, real_t delta);
real_t HuberLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t delta);
std::vector<real_t> HuberLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y, real_t delta);
std::vector<std::vector<real_t>> HuberLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t delta);
real_t HingeLoss(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t HingeLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> HingeLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> HingeLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
real_t HingeLoss(std::vector<real_t> y_hat, std::vector<real_t> y, std::vector<real_t> weights, real_t C);
real_t HingeLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, std::vector<std::vector<real_t>> weights, real_t C);
std::vector<real_t> HingeLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y, real_t C);
std::vector<std::vector<real_t>> HingeLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t C);
real_t WassersteinLoss(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t WassersteinLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<real_t> WassersteinLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<std::vector<real_t>> WassersteinLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
real_t dualFormSVM(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y); // TO DO: DON'T forget to add non-linear kernelizations.
std::vector<real_t> dualFormSVMDeriv(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y);
protected:
static void _bind_methods();
};

View File

@ -5,8 +5,8 @@
//
#include "cost_old.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include <cmath>
#include <iostream>
@ -29,12 +29,12 @@ real_t MLPPCostOld::MSE(std::vector<std::vector<real_t>> y_hat, std::vector<std:
}
std::vector<real_t> MLPPCostOld::MSEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.subtraction(y_hat, y);
}
std::vector<std::vector<real_t>> MLPPCostOld::MSEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.subtraction(y_hat, y);
}
@ -57,12 +57,12 @@ real_t MLPPCostOld::RMSE(std::vector<std::vector<real_t>> y_hat, std::vector<std
}
std::vector<real_t> MLPPCostOld::RMSEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarMultiply(1 / (2 * sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
}
std::vector<std::vector<real_t>> MLPPCostOld::RMSEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarMultiply(1 / (2 / sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
}
@ -138,12 +138,12 @@ real_t MLPPCostOld::MBE(std::vector<std::vector<real_t>> y_hat, std::vector<std:
}
std::vector<real_t> MLPPCostOld::MBEDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.onevec(y_hat.size());
}
std::vector<std::vector<real_t>> MLPPCostOld::MBEDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.onemat(y_hat.size(), y_hat[0].size());
}
@ -170,12 +170,12 @@ real_t MLPPCostOld::LogLoss(std::vector<std::vector<real_t>> y_hat, std::vector<
}
std::vector<real_t> MLPPCostOld::LogLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
}
std::vector<std::vector<real_t>> MLPPCostOld::LogLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
}
@ -200,17 +200,16 @@ real_t MLPPCostOld::CrossEntropy(std::vector<std::vector<real_t>> y_hat, std::ve
}
std::vector<real_t> MLPPCostOld::CrossEntropyDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
}
std::vector<std::vector<real_t>> MLPPCostOld::CrossEntropyDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
}
real_t MLPPCostOld::HuberLoss(std::vector<real_t> y_hat, std::vector<real_t> y, real_t delta) {
MLPPLinAlg alg;
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
if (abs(y[i] - y_hat[i]) <= delta) {
@ -223,7 +222,6 @@ real_t MLPPCostOld::HuberLoss(std::vector<real_t> y_hat, std::vector<real_t> y,
}
real_t MLPPCostOld::HuberLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t delta) {
MLPPLinAlg alg;
real_t sum = 0;
for (uint32_t i = 0; i < y_hat.size(); i++) {
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
@ -238,7 +236,6 @@ real_t MLPPCostOld::HuberLoss(std::vector<std::vector<real_t>> y_hat, std::vecto
}
std::vector<real_t> MLPPCostOld::HuberLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y, real_t delta) {
MLPPLinAlg alg;
std::vector<real_t> deriv;
deriv.resize(y_hat.size());
@ -257,8 +254,6 @@ std::vector<real_t> MLPPCostOld::HuberLossDeriv(std::vector<real_t> y_hat, std::
}
std::vector<std::vector<real_t>> MLPPCostOld::HuberLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t delta) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> deriv;
deriv.resize(y_hat.size());
for (uint32_t i = 0; i < deriv.size(); i++) {
@ -347,39 +342,35 @@ real_t MLPPCostOld::WassersteinLoss(std::vector<std::vector<real_t>> y_hat, std:
}
std::vector<real_t> MLPPCostOld::WassersteinLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarMultiply(-1, y); // Simple.
}
std::vector<std::vector<real_t>> MLPPCostOld::WassersteinLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarMultiply(-1, y); // Simple.
}
real_t MLPPCostOld::HingeLoss(std::vector<real_t> y_hat, std::vector<real_t> y, std::vector<real_t> weights, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPRegOld regularization;
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
}
real_t MLPPCostOld::HingeLoss(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, std::vector<std::vector<real_t>> weights, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPRegOld regularization;
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
}
std::vector<real_t> MLPPCostOld::HingeLossDeriv(std::vector<real_t> y_hat, std::vector<real_t> y, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
}
std::vector<std::vector<real_t>> MLPPCostOld::HingeLossDeriv(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y, real_t C) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
}
real_t MLPPCostOld::dualFormSVM(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y.
std::vector<std::vector<real_t>> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations.
std::vector<std::vector<real_t>> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y);
@ -390,7 +381,7 @@ real_t MLPPCostOld::dualFormSVM(std::vector<real_t> alpha, std::vector<std::vect
}
std::vector<real_t> MLPPCostOld::dualFormSVMDeriv(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> Y = alg.zeromat(y.size(), y.size());
for (uint32_t i = 0; i < y.size(); i++) {
Y[i][i] = y[i]; // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y.

View File

@ -10,8 +10,10 @@
#include "core/os/file_access.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../softmax_net/softmax_net_old.h"
#include "../stat/stat.h"
#include "../stat/stat_old.h"
#include <algorithm>
#include <cmath>
@ -513,7 +515,7 @@ std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>, s
// MULTIVARIATE SUPERVISED
void MLPPData::setData(int k, std::string fileName, std::vector<std::vector<real_t>> &inputSet, std::vector<real_t> &outputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::string inputTemp;
std::string outputTemp;
@ -541,7 +543,7 @@ void MLPPData::setData(int k, std::string fileName, std::vector<std::vector<real
}
void MLPPData::printData(std::vector<std::string> inputName, std::string outputName, std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
inputSet = alg.transpose(inputSet);
for (uint32_t i = 0; i < inputSet.size(); i++) {
std::cout << inputName[i] << std::endl;
@ -559,7 +561,7 @@ void MLPPData::printData(std::vector<std::string> inputName, std::string outputN
// UNSUPERVISED
void MLPPData::setData(int k, std::string fileName, std::vector<std::vector<real_t>> &inputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::string inputTemp;
inputSet.resize(k);
@ -583,7 +585,7 @@ void MLPPData::setData(int k, std::string fileName, std::vector<std::vector<real
}
void MLPPData::printData(std::vector<std::string> inputName, std::vector<std::vector<real_t>> inputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
inputSet = alg.transpose(inputSet);
for (uint32_t i = 0; i < inputSet.size(); i++) {
std::cout << inputName[i] << std::endl;
@ -646,7 +648,7 @@ std::vector<std::vector<real_t>> MLPPData::rgb2gray(std::vector<std::vector<std:
}
std::vector<std::vector<std::vector<real_t>>> MLPPData::rgb2ycbcr(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> YCbCr;
YCbCr = alg.resize(YCbCr, input);
for (uint32_t i = 0; i < YCbCr[0].size(); i++) {
@ -662,7 +664,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPData::rgb2ycbcr(std::vector<st
// Conversion formulas available here:
// https://www.rapidtables.com/convert/color/rgb-to-hsv.html
std::vector<std::vector<std::vector<real_t>>> MLPPData::rgb2hsv(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> HSV;
HSV = alg.resize(HSV, input);
for (uint32_t i = 0; i < HSV[0].size(); i++) {
@ -704,7 +706,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPData::rgb2hsv(std::vector<std:
// http://machinethatsees.blogspot.com/2013/07/how-to-convert-rgb-to-xyz-or-vice-versa.html
std::vector<std::vector<std::vector<real_t>>> MLPPData::rgb2xyz(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> XYZ;
XYZ = alg.resize(XYZ, input);
std::vector<std::vector<real_t>> RGB2XYZ = { { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } };
@ -712,7 +714,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPData::rgb2xyz(std::vector<std:
}
std::vector<std::vector<std::vector<real_t>>> MLPPData::xyz2rgb(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> XYZ;
XYZ = alg.resize(XYZ, input);
std::vector<std::vector<real_t>> RGB2XYZ = alg.inverse({ { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } });
@ -907,7 +909,7 @@ std::vector<std::vector<real_t>> MLPPData::BOW(std::vector<std::string> sentence
}
std::vector<std::vector<real_t>> MLPPData::TFIDF(std::vector<std::string> sentences) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::string> wordList = removeNullByte(removeStopWords(createWordList(sentences)));
std::vector<std::vector<std::string>> segmented_sentences;
@ -1093,10 +1095,10 @@ MLPPData::WordsToVecResult MLPPData::word_to_vec(std::vector<std::string> senten
}
std::vector<std::vector<real_t>> MLPPData::LSA(std::vector<std::string> sentences, int dim) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> docWordData = BOW(sentences, "Binary");
MLPPLinAlg::SVDResultOld svr_res = alg.SVD(docWordData);
MLPPLinAlgOld::SVDResultOld svr_res = alg.SVD(docWordData);
std::vector<std::vector<real_t>> S_trunc = alg.zeromat(dim, dim);
std::vector<std::vector<real_t>> Vt_trunc;
for (int i = 0; i < dim; i++) {
@ -1136,7 +1138,7 @@ void MLPPData::setInputNames(std::string fileName, std::vector<std::string> &inp
}
std::vector<std::vector<real_t>> MLPPData::featureScaling(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
X = alg.transpose(X);
std::vector<real_t> max_elements, min_elements;
max_elements.resize(X.size());
@ -1156,8 +1158,8 @@ std::vector<std::vector<real_t>> MLPPData::featureScaling(std::vector<std::vecto
}
std::vector<std::vector<real_t>> MLPPData::meanNormalization(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPStat stat;
MLPPLinAlgOld alg;
MLPPStatOld stat;
// (X_j - mu_j) / std_j, for every j
X = meanCentering(X);
@ -1168,7 +1170,7 @@ std::vector<std::vector<real_t>> MLPPData::meanNormalization(std::vector<std::ve
}
std::vector<std::vector<real_t>> MLPPData::meanCentering(std::vector<std::vector<real_t>> X) {
MLPPStat stat;
MLPPStatOld stat;
for (uint32_t i = 0; i < X.size(); i++) {
real_t mean_i = stat.mean(X[i]);
for (uint32_t j = 0; j < X[i].size(); j++) {

View File

@ -9,9 +9,9 @@
#include "core/os/file_access.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../softmax_net/softmax_net_old.h"
#include "../stat/stat.h"
#include "../stat/stat_old.h"
#include <algorithm>
#include <cmath>
@ -132,7 +132,7 @@ std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>, s
// MULTIVARIATE SUPERVISED
void MLPPDataOld::setData(int k, std::string fileName, std::vector<std::vector<real_t>> &inputSet, std::vector<real_t> &outputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::string inputTemp;
std::string outputTemp;
@ -160,7 +160,7 @@ void MLPPDataOld::setData(int k, std::string fileName, std::vector<std::vector<r
}
void MLPPDataOld::printData(std::vector<std::string> inputName, std::string outputName, std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
inputSet = alg.transpose(inputSet);
for (uint32_t i = 0; i < inputSet.size(); i++) {
std::cout << inputName[i] << std::endl;
@ -178,7 +178,7 @@ void MLPPDataOld::printData(std::vector<std::string> inputName, std::string outp
// UNSUPERVISED
void MLPPDataOld::setData(int k, std::string fileName, std::vector<std::vector<real_t>> &inputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::string inputTemp;
inputSet.resize(k);
@ -202,7 +202,7 @@ void MLPPDataOld::setData(int k, std::string fileName, std::vector<std::vector<r
}
void MLPPDataOld::printData(std::vector<std::string> inputName, std::vector<std::vector<real_t>> inputSet) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
inputSet = alg.transpose(inputSet);
for (uint32_t i = 0; i < inputSet.size(); i++) {
std::cout << inputName[i] << std::endl;
@ -265,7 +265,7 @@ std::vector<std::vector<real_t>> MLPPDataOld::rgb2gray(std::vector<std::vector<s
}
std::vector<std::vector<std::vector<real_t>>> MLPPDataOld::rgb2ycbcr(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> YCbCr;
YCbCr = alg.resize(YCbCr, input);
for (uint32_t i = 0; i < YCbCr[0].size(); i++) {
@ -281,7 +281,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPDataOld::rgb2ycbcr(std::vector
// Conversion formulas available here:
// https://www.rapidtables.com/convert/color/rgb-to-hsv.html
std::vector<std::vector<std::vector<real_t>>> MLPPDataOld::rgb2hsv(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> HSV;
HSV = alg.resize(HSV, input);
for (uint32_t i = 0; i < HSV[0].size(); i++) {
@ -323,7 +323,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPDataOld::rgb2hsv(std::vector<s
// http://machinethatsees.blogspot.com/2013/07/how-to-convert-rgb-to-xyz-or-vice-versa.html
std::vector<std::vector<std::vector<real_t>>> MLPPDataOld::rgb2xyz(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> XYZ;
XYZ = alg.resize(XYZ, input);
std::vector<std::vector<real_t>> RGB2XYZ = { { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } };
@ -331,7 +331,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPDataOld::rgb2xyz(std::vector<s
}
std::vector<std::vector<std::vector<real_t>>> MLPPDataOld::xyz2rgb(std::vector<std::vector<std::vector<real_t>>> input) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<std::vector<real_t>>> XYZ;
XYZ = alg.resize(XYZ, input);
std::vector<std::vector<real_t>> RGB2XYZ = alg.inverse({ { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } });
@ -526,7 +526,7 @@ std::vector<std::vector<real_t>> MLPPDataOld::BOW(std::vector<std::string> sente
}
std::vector<std::vector<real_t>> MLPPDataOld::TFIDF(std::vector<std::string> sentences) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::string> wordList = removeNullByte(removeStopWords(createWordList(sentences)));
std::vector<std::vector<std::string>> segmented_sentences;
@ -712,10 +712,10 @@ MLPPDataOld::WordsToVecResult MLPPDataOld::word_to_vec(std::vector<std::string>
}
std::vector<std::vector<real_t>> MLPPDataOld::LSA(std::vector<std::string> sentences, int dim) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> docWordData = BOW(sentences, "Binary");
MLPPLinAlg::SVDResultOld svr_res = alg.SVD(docWordData);
MLPPLinAlgOld::SVDResultOld svr_res = alg.SVD(docWordData);
std::vector<std::vector<real_t>> S_trunc = alg.zeromat(dim, dim);
std::vector<std::vector<real_t>> Vt_trunc;
for (int i = 0; i < dim; i++) {
@ -755,7 +755,7 @@ void MLPPDataOld::setInputNames(std::string fileName, std::vector<std::string> &
}
std::vector<std::vector<real_t>> MLPPDataOld::featureScaling(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
X = alg.transpose(X);
std::vector<real_t> max_elements, min_elements;
max_elements.resize(X.size());
@ -775,8 +775,8 @@ std::vector<std::vector<real_t>> MLPPDataOld::featureScaling(std::vector<std::ve
}
std::vector<std::vector<real_t>> MLPPDataOld::meanNormalization(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPStat stat;
MLPPLinAlgOld alg;
MLPPStatOld stat;
// (X_j - mu_j) / std_j, for every j
X = meanCentering(X);
@ -787,7 +787,7 @@ std::vector<std::vector<real_t>> MLPPDataOld::meanNormalization(std::vector<std:
}
std::vector<std::vector<real_t>> MLPPDataOld::meanCentering(std::vector<std::vector<real_t>> X) {
MLPPStat stat;
MLPPStatOld stat;
for (uint32_t i = 0; i < X.size(); i++) {
real_t mean_i = stat.mean(X[i]);
for (uint32_t j = 0; j < X[i].size(); j++) {

View File

@ -6,9 +6,9 @@
#include "dual_svc_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -37,9 +37,8 @@ real_t MLPPDualSVCOld::modelTest(std::vector<real_t> x) {
}
void MLPPDualSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
MLPPReg regularization;
class MLPPCostOld cost;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -84,10 +83,10 @@ void MLPPDualSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool U
}
// void MLPPDualSVCOld::SGD(real_t learning_rate, int max_epoch, bool UI){
// class MLPPCost cost;
// class MLPPCostOld cost;
// MLPPActivationOld avn;
// MLPPLinAlg alg;
// MLPPReg regularization;
// MLPPLinAlgOld alg;
// MLPPRegOld regularization;
// real_t cost_prev = 0;
// int epoch = 1;
@ -117,10 +116,10 @@ void MLPPDualSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool U
// }
// void MLPPDualSVCOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI){
// class MLPPCost cost;
// class MLPPCostOld cost;
// MLPPActivationOld avn;
// MLPPLinAlg alg;
// MLPPReg regularization;
// MLPPLinAlgOld alg;
// MLPPRegOld regularization;
// real_t cost_prev = 0;
// int epoch = 1;
@ -167,7 +166,7 @@ void MLPPDualSVCOld::save(std::string fileName) {
}
real_t MLPPDualSVCOld::Cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
class MLPPCost cost;
class MLPPCostOld cost;
return cost.dualFormSVM(alpha, X, y);
}
@ -177,7 +176,7 @@ std::vector<real_t> MLPPDualSVCOld::Evaluate(std::vector<std::vector<real_t>> X)
}
std::vector<real_t> MLPPDualSVCOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<real_t> z;
for (uint32_t i = 0; i < X.size(); i++) {
real_t sum = 0;
@ -198,7 +197,7 @@ real_t MLPPDualSVCOld::Evaluate(std::vector<real_t> x) {
}
real_t MLPPDualSVCOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
real_t z = 0;
for (uint32_t j = 0; j < alpha.size(); j++) {
if (alpha[j] != 0) {
@ -227,7 +226,7 @@ void MLPPDualSVCOld::alphaProjection() {
}
real_t MLPPDualSVCOld::kernelFunction(std::vector<real_t> u, std::vector<real_t> v, std::string kernel) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (kernel == "Linear") {
return alg.dot(u, v);
}
@ -236,7 +235,7 @@ real_t MLPPDualSVCOld::kernelFunction(std::vector<real_t> u, std::vector<real_t>
}
std::vector<std::vector<real_t>> MLPPDualSVCOld::kernelFunction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B, std::string kernel) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (kernel == "Linear") {
return alg.matmult(inputSet, alg.transpose(inputSet));
}

View File

@ -6,10 +6,10 @@
#include "exp_reg_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../stat/stat.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../stat/stat_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -39,8 +39,8 @@ real_t MLPPExpRegOld::modelTest(std::vector<real_t> x) {
}
void MLPPExpRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -96,7 +96,7 @@ void MLPPExpRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI
}
void MLPPExpRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -142,8 +142,8 @@ void MLPPExpRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPExpRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -214,8 +214,8 @@ void MLPPExpRegOld::save(std::string fileName) {
}
real_t MLPPExpRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}

View File

@ -69,7 +69,7 @@ void MLPPGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ComputeDiscriminatorGradientsResult dgrads = compute_discriminator_gradients(y_hat, _output_set);
dgrads.cumulative_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, dgrads.cumulative_hidden_layer_w_grad);
dgrads.cumulative_hidden_layer_w_grad = alg.scalar_multiplynvt(learning_rate / _n, dgrads.cumulative_hidden_layer_w_grad);
dgrads.output_w_grad = alg.scalar_multiplynv(learning_rate / _n, dgrads.output_w_grad);
update_discriminator_parameters(dgrads.cumulative_hidden_layer_w_grad, dgrads.output_w_grad, learning_rate);
@ -80,7 +80,7 @@ void MLPPGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
_output_set = alg.onevecnv(_n);
Vector<Ref<MLPPMatrix>> cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(y_hat, _output_set);
cumulative_generator_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, cumulative_generator_hidden_layer_w_grad);
cumulative_generator_hidden_layer_w_grad = alg.scalar_multiplynvt(learning_rate / _n, cumulative_generator_hidden_layer_w_grad);
update_generator_parameters(cumulative_generator_hidden_layer_w_grad, learning_rate);
forward_pass();

View File

@ -6,9 +6,9 @@
#include "gan_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <cmath>
@ -23,13 +23,13 @@ MLPPGANOld::~MLPPGANOld() {
}
std::vector<std::vector<real_t>> MLPPGANOld::generateExample(int n) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return modelSetTestGenerator(alg.gaussianNoise(n, k));
}
void MLPPGANOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -79,7 +79,7 @@ void MLPPGANOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
}
real_t MLPPGANOld::score() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPUtilities util;
forwardPass();
return util.performance(y_hat, alg.onevec(n));
@ -99,7 +99,7 @@ void MLPPGANOld::save(std::string fileName) {
}
void MLPPGANOld::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (network.empty()) {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha));
network[0].forwardPass();
@ -110,7 +110,7 @@ void MLPPGANOld::addLayer(int n_hidden, std::string activation, std::string weig
}
void MLPPGANOld::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (!network.empty()) {
outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, "Sigmoid", "LogLoss", network[network.size() - 1].a, weightInit, reg, lambda, alpha);
} else {
@ -148,8 +148,8 @@ std::vector<real_t> MLPPGANOld::modelSetTestDiscriminator(std::vector<std::vecto
}
real_t MLPPGANOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
@ -162,7 +162,7 @@ real_t MLPPGANOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
}
void MLPPGANOld::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (!network.empty()) {
network[0].input = alg.gaussianNoise(n, k);
network[0].forwardPass();
@ -180,7 +180,7 @@ void MLPPGANOld::forwardPass() {
}
void MLPPGANOld::updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation);
outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n;
@ -197,7 +197,7 @@ void MLPPGANOld::updateDiscriminatorParameters(std::vector<std::vector<std::vect
}
void MLPPGANOld::updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (!network.empty()) {
for (int i = network.size() / 2; i >= 0; i--) {
@ -210,10 +210,10 @@ void MLPPGANOld::updateGeneratorParameters(std::vector<std::vector<std::vector<r
}
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPGANOld::computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
class MLPPCost cost;
class MLPPCostOld cost;
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
@ -246,10 +246,10 @@ std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> M
}
std::vector<std::vector<std::vector<real_t>>> MLPPGANOld::computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
class MLPPCost cost;
class MLPPCostOld cost;
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.

View File

@ -8,6 +8,7 @@
#include "../stat/stat.h"
#include <iostream>
/*
void MLPPGaussMarkovChecker::checkGMConditions(std::vector<real_t> eps) {
bool condition1 = arithmeticMean(eps);
bool condition2 = homoscedasticity(eps);
@ -55,6 +56,7 @@ bool MLPPGaussMarkovChecker::exogeneity(std::vector<real_t> eps) {
return true;
}
*/
void MLPPGaussMarkovChecker::_bind_methods() {
}

View File

@ -19,12 +19,14 @@ class MLPPGaussMarkovChecker : public Reference {
GDCLASS(MLPPGaussMarkovChecker, Reference);
public:
/*
void checkGMConditions(std::vector<real_t> eps);
// Independent, 3 Gauss-Markov Conditions
bool arithmeticMean(std::vector<real_t> eps); // 1) Arithmetic Mean of 0.
bool homoscedasticity(std::vector<real_t> eps); // 2) Homoscedasticity
bool exogeneity(std::vector<real_t> eps); // 3) Cov of any 2 non-equal eps values = 0.
*/
protected:
static void _bind_methods();

View File

@ -5,7 +5,7 @@
//
#include "gauss_markov_checker_old.h"
#include "../stat/stat.h"
#include "../stat/stat_old.h"
#include <iostream>
void MLPPGaussMarkovCheckerOld::checkGMConditions(std::vector<real_t> eps) {
@ -21,7 +21,7 @@ void MLPPGaussMarkovCheckerOld::checkGMConditions(std::vector<real_t> eps) {
}
bool MLPPGaussMarkovCheckerOld::arithmeticMean(std::vector<real_t> eps) {
MLPPStat stat;
MLPPStatOld stat;
if (stat.mean(eps) == 0) {
return true;
} else {
@ -30,7 +30,7 @@ bool MLPPGaussMarkovCheckerOld::arithmeticMean(std::vector<real_t> eps) {
}
bool MLPPGaussMarkovCheckerOld::homoscedasticity(std::vector<real_t> eps) {
MLPPStat stat;
MLPPStatOld stat;
real_t currentVar = (eps[0] - stat.mean(eps)) * (eps[0] - stat.mean(eps)) / eps.size();
for (uint32_t i = 0; i < eps.size(); i++) {
if (currentVar != (eps[i] - stat.mean(eps)) * (eps[i] - stat.mean(eps)) / eps.size()) {
@ -42,7 +42,7 @@ bool MLPPGaussMarkovCheckerOld::homoscedasticity(std::vector<real_t> eps) {
}
bool MLPPGaussMarkovCheckerOld::exogeneity(std::vector<real_t> eps) {
MLPPStat stat;
MLPPStatOld stat;
for (uint32_t i = 0; i < eps.size(); i++) {
for (uint32_t j = 0; j < eps.size(); j++) {
if (i != j) {

View File

@ -6,8 +6,8 @@
#include "gaussian_nb_old.h"
#include "../lin_alg/lin_alg.h"
#include "../stat/stat.h"
#include "../lin_alg/lin_alg_old.h"
#include "../stat/stat_old.h"
#include "../utilities/utilities.h"
#include <algorithm>
@ -47,8 +47,8 @@ real_t MLPPGaussianNBOld::score() {
}
void MLPPGaussianNBOld::Evaluate() {
MLPPStat stat;
MLPPLinAlg alg;
MLPPStatOld stat;
MLPPLinAlgOld alg;
// Computing mu_k_y and sigma_k_y
mu.resize(class_num);

View File

@ -6,7 +6,7 @@
#include "hidden_layer_old.h"
#include "../activation/activation.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include <iostream>
#include <random>
@ -103,7 +103,7 @@ MLPPOldHiddenLayer::MLPPOldHiddenLayer(int p_n_hidden, std::string p_activation,
}
void MLPPOldHiddenLayer::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
@ -111,7 +111,7 @@ void MLPPOldHiddenLayer::forwardPass() {
}
void MLPPOldHiddenLayer::Test(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
a_test = (avn.*activationTest_map[activation])(z_test, false);

File diff suppressed because it is too large Load Diff

View File

@ -26,45 +26,23 @@ class MLPPLinAlg : public Reference {
public:
// MATRIX FUNCTIONS
std::vector<std::vector<real_t>> gramMatrix(std::vector<std::vector<real_t>> A);
//std::vector<std::vector<real_t>> gramMatrix(std::vector<std::vector<real_t>> A);
//bool linearIndependenceChecker(std::vector<std::vector<real_t>> A);
bool linearIndependenceChecker(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> gaussianNoise(int n, int m);
Ref<MLPPMatrix> gaussian_noise(int n, int m);
std::vector<std::vector<real_t>> addition(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
std::vector<std::vector<real_t>> subtraction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
std::vector<std::vector<real_t>> matmult(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
Ref<MLPPMatrix> additionnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> subtractionnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> matmultnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
std::vector<std::vector<real_t>> hadamard_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
std::vector<std::vector<real_t>> kronecker_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
std::vector<std::vector<real_t>> elementWiseDivision(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
Ref<MLPPMatrix> hadamard_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> kronecker_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> element_wise_divisionnvnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
std::vector<std::vector<real_t>> transpose(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> scalarMultiply(real_t scalar, std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> scalarAdd(real_t scalar, std::vector<std::vector<real_t>> A);
Ref<MLPPMatrix> transposenm(const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> scalar_multiplynm(real_t scalar, const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> scalar_addnm(real_t scalar, const Ref<MLPPMatrix> &A);
std::vector<std::vector<real_t>> log(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> log10(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> exp(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> erf(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> exponentiate(std::vector<std::vector<real_t>> A, real_t p);
std::vector<std::vector<real_t>> sqrt(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> cbrt(std::vector<std::vector<real_t>> A);
Ref<MLPPMatrix> lognm(const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> log10nm(const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> expnm(const Ref<MLPPMatrix> &A);
@ -73,68 +51,41 @@ public:
Ref<MLPPMatrix> sqrtnm(const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> cbrtnm(const Ref<MLPPMatrix> &A);
std::vector<std::vector<real_t>> matrixPower(std::vector<std::vector<real_t>> A, int n);
std::vector<std::vector<real_t>> abs(std::vector<std::vector<real_t>> A);
//std::vector<std::vector<real_t>> matrixPower(std::vector<std::vector<real_t>> A, int n);
Ref<MLPPMatrix> absnm(const Ref<MLPPMatrix> &A);
real_t det(std::vector<std::vector<real_t>> A, int d);
real_t detm(const Ref<MLPPMatrix> &A, int d);
real_t trace(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> cofactor(std::vector<std::vector<real_t>> A, int n, int i, int j);
std::vector<std::vector<real_t>> adjoint(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> inverse(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> pinverse(std::vector<std::vector<real_t>> A);
//real_t trace(std::vector<std::vector<real_t>> A);
Ref<MLPPMatrix> cofactornm(const Ref<MLPPMatrix> &A, int n, int i, int j);
Ref<MLPPMatrix> adjointnm(const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> inversenm(const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> pinversenm(const Ref<MLPPMatrix> &A);
std::vector<std::vector<real_t>> zeromat(int n, int m);
std::vector<std::vector<real_t>> onemat(int n, int m);
std::vector<std::vector<real_t>> full(int n, int m, int k);
Ref<MLPPMatrix> zeromatnm(int n, int m);
Ref<MLPPMatrix> onematnm(int n, int m);
Ref<MLPPMatrix> fullnm(int n, int m, int k);
std::vector<std::vector<real_t>> sin(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> cos(std::vector<std::vector<real_t>> A);
Ref<MLPPMatrix> sinnm(const Ref<MLPPMatrix> &A);
Ref<MLPPMatrix> cosnm(const Ref<MLPPMatrix> &A);
std::vector<std::vector<real_t>> rotate(std::vector<std::vector<real_t>> A, real_t theta, int axis = -1);
//std::vector<std::vector<real_t>> rotate(std::vector<std::vector<real_t>> A, real_t theta, int axis = -1);
std::vector<std::vector<real_t>> max(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
Ref<MLPPMatrix> maxnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
real_t max(std::vector<std::vector<real_t>> A);
real_t min(std::vector<std::vector<real_t>> A);
//real_t max(std::vector<std::vector<real_t>> A);
//real_t min(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> round(std::vector<std::vector<real_t>> A);
//std::vector<std::vector<real_t>> round(std::vector<std::vector<real_t>> A);
real_t norm_2(std::vector<std::vector<real_t>> A);
//real_t norm_2(std::vector<std::vector<real_t>> A);
std::vector<std::vector<real_t>> identity(real_t d);
Ref<MLPPMatrix> identitym(int d);
std::vector<std::vector<real_t>> cov(std::vector<std::vector<real_t>> A);
Ref<MLPPMatrix> covnm(const Ref<MLPPMatrix> &A);
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> eig(std::vector<std::vector<real_t>> A);
struct EigenResultOld {
std::vector<std::vector<real_t>> eigen_vectors;
std::vector<std::vector<real_t>> eigen_values;
};
EigenResultOld eigen_old(std::vector<std::vector<real_t>> A);
struct EigenResult {
Ref<MLPPMatrix> eigen_vectors;
Ref<MLPPMatrix> eigen_values;
@ -142,14 +93,6 @@ public:
EigenResult eigen(Ref<MLPPMatrix> A);
struct SVDResultOld {
std::vector<std::vector<real_t>> U;
std::vector<std::vector<real_t>> S;
std::vector<std::vector<real_t>> Vt;
};
SVDResultOld SVD(std::vector<std::vector<real_t>> A);
struct SVDResult {
Ref<MLPPMatrix> U;
Ref<MLPPMatrix> S;
@ -158,34 +101,34 @@ public:
SVDResult svd(const Ref<MLPPMatrix> &A);
std::vector<real_t> vectorProjection(std::vector<real_t> a, std::vector<real_t> b);
//std::vector<real_t> vectorProjection(std::vector<real_t> a, std::vector<real_t> b);
std::vector<std::vector<real_t>> gramSchmidtProcess(std::vector<std::vector<real_t>> A);
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> QRD(std::vector<std::vector<real_t>> A);
//std::vector<std::vector<real_t>> gramSchmidtProcess(std::vector<std::vector<real_t>> A);
/*
struct QRDResult {
std::vector<std::vector<real_t>> Q;
std::vector<std::vector<real_t>> R;
};
*/
QRDResult qrd(std::vector<std::vector<real_t>> A);
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> chol(std::vector<std::vector<real_t>> A);
//QRDResult qrd(std::vector<std::vector<real_t>> A);
/*
struct CholeskyResult {
std::vector<std::vector<real_t>> L;
std::vector<std::vector<real_t>> Lt;
};
CholeskyResult cholesky(std::vector<std::vector<real_t>> A);
*/
real_t sum_elements(std::vector<std::vector<real_t>> A);
//real_t sum_elements(std::vector<std::vector<real_t>> A);
std::vector<real_t> flatten(std::vector<std::vector<real_t>> A);
Ref<MLPPVector> flattenmnv(const Vector<Ref<MLPPVector>> &A);
Ref<MLPPVector> flattenvvnv(const Ref<MLPPMatrix> &A);
/*
std::vector<real_t> solve(std::vector<std::vector<real_t>> A, std::vector<real_t> b);
bool positiveDefiniteChecker(std::vector<std::vector<real_t>> A);
@ -193,38 +136,29 @@ public:
bool negativeDefiniteChecker(std::vector<std::vector<real_t>> A);
bool zeroEigenvalue(std::vector<std::vector<real_t>> A);
void printMatrix(std::vector<std::vector<real_t>> A);
*/
// VECTOR FUNCTIONS
std::vector<std::vector<real_t>> outerProduct(std::vector<real_t> a, std::vector<real_t> b); // This multiplies a, bT
Ref<MLPPMatrix> outer_product(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b); // This multiplies a, bT
std::vector<real_t> hadamard_product(std::vector<real_t> a, std::vector<real_t> b);
Ref<MLPPVector> hadamard_productnv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
void hadamard_productv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b, Ref<MLPPVector> out);
std::vector<real_t> elementWiseDivision(std::vector<real_t> a, std::vector<real_t> b);
Ref<MLPPVector> element_wise_divisionnv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
std::vector<real_t> scalarMultiply(real_t scalar, std::vector<real_t> a);
Ref<MLPPVector> scalar_multiplynv(real_t scalar, const Ref<MLPPVector> &a);
void scalar_multiplyv(real_t scalar, const Ref<MLPPVector> &a, Ref<MLPPVector> out);
std::vector<real_t> scalarAdd(real_t scalar, std::vector<real_t> a);
Ref<MLPPVector> scalar_addnv(real_t scalar, const Ref<MLPPVector> &a);
void scalar_addv(real_t scalar, const Ref<MLPPVector> &a, Ref<MLPPVector> out);
std::vector<real_t> addition(std::vector<real_t> a, std::vector<real_t> b);
Ref<MLPPVector> additionnv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
void additionv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b, Ref<MLPPVector> out);
std::vector<real_t> subtraction(std::vector<real_t> a, std::vector<real_t> b);
Ref<MLPPVector> subtractionnv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
void subtractionv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b, Ref<MLPPVector> out);
std::vector<real_t> subtractMatrixRows(std::vector<real_t> a, std::vector<std::vector<real_t>> B);
Ref<MLPPVector> subtract_matrix_rowsnv(const Ref<MLPPVector> &a, const Ref<MLPPMatrix> &B);
Ref<MLPPVector> lognv(const Ref<MLPPVector> &a);
@ -235,16 +169,9 @@ public:
Ref<MLPPVector> sqrtnv(const Ref<MLPPVector> &a);
Ref<MLPPVector> cbrtnv(const Ref<MLPPVector> &a);
real_t dot(std::vector<real_t> a, std::vector<real_t> b);
real_t dotnv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
std::vector<real_t> cross(std::vector<real_t> a, std::vector<real_t> b);
std::vector<real_t> abs(std::vector<real_t> a);
std::vector<real_t> zerovec(int n);
std::vector<real_t> onevec(int n);
std::vector<real_t> full(int n, int k);
//std::vector<real_t> cross(std::vector<real_t> a, std::vector<real_t> b);
Ref<MLPPVector> absv(const Ref<MLPPVector> &a);
@ -252,91 +179,62 @@ public:
Ref<MLPPVector> onevecnv(int n);
Ref<MLPPVector> fullnv(int n, int k);
std::vector<std::vector<real_t>> diag(std::vector<real_t> a);
Ref<MLPPMatrix> diagnm(const Ref<MLPPVector> &a);
std::vector<real_t> sin(std::vector<real_t> a);
std::vector<real_t> cos(std::vector<real_t> a);
Ref<MLPPVector> sinnv(const Ref<MLPPVector> &a);
Ref<MLPPVector> cosnv(const Ref<MLPPVector> &a);
std::vector<real_t> max(std::vector<real_t> a, std::vector<real_t> b);
Ref<MLPPVector> maxnvv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
real_t max(std::vector<real_t> a);
real_t min(std::vector<real_t> a);
real_t maxvr(const Ref<MLPPVector> &a);
real_t minvr(const Ref<MLPPVector> &a);
std::vector<real_t> round(std::vector<real_t> a);
//std::vector<real_t> round(std::vector<real_t> a);
real_t euclideanDistance(std::vector<real_t> a, std::vector<real_t> b);
real_t euclidean_distance(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
real_t euclidean_distance_squared(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
/*
real_t norm_2(std::vector<real_t> a);
*/
real_t norm_sq(std::vector<real_t> a);
real_t norm_sqv(const Ref<MLPPVector> &a);
real_t sum_elements(std::vector<real_t> a);
real_t sum_elementsv(const Ref<MLPPVector> &a);
real_t cosineSimilarity(std::vector<real_t> a, std::vector<real_t> b);
void printVector(std::vector<real_t> a);
//real_t cosineSimilarity(std::vector<real_t> a, std::vector<real_t> b);
// MATRIX-VECTOR FUNCTIONS
std::vector<std::vector<real_t>> mat_vec_add(std::vector<std::vector<real_t>> A, std::vector<real_t> b);
std::vector<real_t> mat_vec_mult(std::vector<std::vector<real_t>> A, std::vector<real_t> b);
Ref<MLPPMatrix> mat_vec_addnm(const Ref<MLPPMatrix> &A, const Ref<MLPPVector> &b);
Ref<MLPPVector> mat_vec_multnv(const Ref<MLPPMatrix> &A, const Ref<MLPPVector> &b);
// TENSOR FUNCTIONS
std::vector<std::vector<std::vector<real_t>>> addition(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
Vector<Ref<MLPPMatrix>> additionnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
Vector<Ref<MLPPMatrix>> addition_vt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
Vector<Ref<MLPPMatrix>> element_wise_divisionnvnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
std::vector<std::vector<std::vector<real_t>>> elementWiseDivision(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
Vector<Ref<MLPPMatrix>> element_wise_divisionnv_vt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
Vector<Ref<MLPPMatrix>> sqrtnvt(const Vector<Ref<MLPPMatrix>> &A);
std::vector<std::vector<std::vector<real_t>>> sqrt(std::vector<std::vector<std::vector<real_t>>> A);
Vector<Ref<MLPPMatrix>> sqrt_vt(const Vector<Ref<MLPPMatrix>> &A);
Vector<Ref<MLPPMatrix>> exponentiatenvt(const Vector<Ref<MLPPMatrix>> &A, real_t p);
std::vector<std::vector<std::vector<real_t>>> exponentiate(std::vector<std::vector<std::vector<real_t>>> A, real_t p);
Vector<Ref<MLPPMatrix>> exponentiate_vt(const Vector<Ref<MLPPMatrix>> &A, real_t p);
//std::vector<std::vector<real_t>> tensor_vec_mult(std::vector<std::vector<std::vector<real_t>>> A, std::vector<real_t> b);
std::vector<std::vector<real_t>> tensor_vec_mult(std::vector<std::vector<std::vector<real_t>>> A, std::vector<real_t> b);
//std::vector<real_t> flatten(std::vector<std::vector<std::vector<real_t>>> A);
std::vector<real_t> flatten(std::vector<std::vector<std::vector<real_t>>> A);
Vector<Ref<MLPPMatrix>> scalar_multiplynvt(real_t scalar, Vector<Ref<MLPPMatrix>> A);
Vector<Ref<MLPPMatrix>> scalar_addnvt(real_t scalar, Vector<Ref<MLPPMatrix>> A);
void printTensor(std::vector<std::vector<std::vector<real_t>>> A);
Vector<Ref<MLPPMatrix>> resizenvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
std::vector<std::vector<std::vector<real_t>>> scalarMultiply(real_t scalar, std::vector<std::vector<std::vector<real_t>>> A);
std::vector<std::vector<std::vector<real_t>>> scalarAdd(real_t scalar, std::vector<std::vector<std::vector<real_t>>> A);
//std::vector<std::vector<std::vector<real_t>>> hadamard_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
Vector<Ref<MLPPMatrix>> scalar_multiply_vm(real_t scalar, Vector<Ref<MLPPMatrix>> A);
Vector<Ref<MLPPMatrix>> scalar_add_vm(real_t scalar, Vector<Ref<MLPPMatrix>> A);
Vector<Ref<MLPPMatrix>> maxnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
Vector<Ref<MLPPMatrix>> absnvt(const Vector<Ref<MLPPMatrix>> &A);
std::vector<std::vector<std::vector<real_t>>> resize(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
//real_t norm_2(std::vector<std::vector<std::vector<real_t>>> A);
Vector<Ref<MLPPMatrix>> resize_vt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
std::vector<std::vector<std::vector<real_t>>> hadamard_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
std::vector<std::vector<std::vector<real_t>>> max(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
Vector<Ref<MLPPMatrix>> max_vt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
std::vector<std::vector<std::vector<real_t>>> abs(std::vector<std::vector<std::vector<real_t>>> A);
Vector<Ref<MLPPMatrix>> abs_vt(const Vector<Ref<MLPPMatrix>> &A);
real_t norm_2(std::vector<std::vector<std::vector<real_t>>> A);
std::vector<std::vector<std::vector<real_t>>> vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B);
//std::vector<std::vector<std::vector<real_t>>> vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B);
protected:
static void _bind_methods();

View File

@ -8,7 +8,7 @@
#include "core/math/math_funcs.h"
#include "../stat/stat.h"
#include "../stat/stat_old.h"
#include <cmath>
#include <iostream>
@ -509,7 +509,7 @@ std::vector<std::vector<real_t>> MLPPLinAlgOld::identity(real_t d) {
}
std::vector<std::vector<real_t>> MLPPLinAlgOld::cov(std::vector<std::vector<real_t>> A) {
MLPPStat stat;
MLPPStatOld stat;
std::vector<std::vector<real_t>> covMat;
covMat.resize(A.size());
for (uint32_t i = 0; i < covMat.size(); i++) {

View File

@ -6,10 +6,10 @@
#include "lin_reg_old.h"
#include "../cost/cost.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg.h"
#include "../stat/stat.h"
#include "../regularization/reg_old.h"
#include "../stat/stat_old.h"
#include "../utilities/utilities.h"
#include <cmath>
@ -41,7 +41,7 @@ real_t MLPPLinRegOld::modelTest(std::vector<real_t> x) {
void MLPPLinRegOld::NewtonRaphson(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -73,7 +73,7 @@ void MLPPLinRegOld::NewtonRaphson(real_t learning_rate, int max_epoch, bool UI)
void MLPPLinRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -104,7 +104,7 @@ void MLPPLinRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI
void MLPPLinRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -143,7 +143,7 @@ void MLPPLinRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPLinRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -183,7 +183,7 @@ void MLPPLinRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_siz
void MLPPLinRegOld::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -230,7 +230,7 @@ void MLPPLinRegOld::Momentum(real_t learning_rate, int max_epoch, int mini_batch
void MLPPLinRegOld::NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -279,7 +279,7 @@ void MLPPLinRegOld::NAG(real_t learning_rate, int max_epoch, int mini_batch_size
void MLPPLinRegOld::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -327,7 +327,7 @@ void MLPPLinRegOld::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_
void MLPPLinRegOld::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI) {
// Adagrad upgrade. Momentum is applied.
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -374,7 +374,7 @@ void MLPPLinRegOld::Adadelta(real_t learning_rate, int max_epoch, int mini_batch
void MLPPLinRegOld::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -427,7 +427,7 @@ void MLPPLinRegOld::Adam(real_t learning_rate, int max_epoch, int mini_batch_siz
void MLPPLinRegOld::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -478,7 +478,7 @@ void MLPPLinRegOld::Adamax(real_t learning_rate, int max_epoch, int mini_batch_s
void MLPPLinRegOld::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
MLPPLinAlgOld alg;
MLPPReg regularization;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -532,7 +532,7 @@ void MLPPLinRegOld::Nadam(real_t learning_rate, int max_epoch, int mini_batch_si
void MLPPLinRegOld::normalEquation() {
MLPPLinAlgOld alg;
MLPPStat stat;
MLPPStatOld stat;
std::vector<real_t> x_means;
std::vector<std::vector<real_t>> inputSetT = alg.transpose(inputSet);
@ -577,8 +577,8 @@ void MLPPLinRegOld::save(std::string fileName) {
}
real_t MLPPLinRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}

View File

@ -7,9 +7,9 @@
#include "log_reg_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -38,8 +38,8 @@ real_t MLPPLogRegOld::modelTest(std::vector<real_t> x) {
}
void MLPPLogRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -70,8 +70,8 @@ void MLPPLogRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI
}
void MLPPLogRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -101,8 +101,8 @@ void MLPPLogRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPLogRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -140,8 +140,8 @@ void MLPPLogRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPLogRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -190,19 +190,19 @@ void MLPPLogRegOld::save(std::string fileName) {
}
real_t MLPPLogRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPLogRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.sigmoid(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
real_t MLPPLogRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.sigmoid(alg.dot(weights, x) + bias);
}

View File

@ -7,9 +7,9 @@
#include "mann_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -53,10 +53,10 @@ std::vector<real_t> MLPPMANNOld::modelTest(std::vector<real_t> x) {
}
void MLPPMANNOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
class MLPPCostOld cost;
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -158,8 +158,8 @@ void MLPPMANNOld::addOutputLayer(std::string activation, std::string loss, std::
}
real_t MLPPMANNOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];

View File

@ -9,9 +9,9 @@
#include "core/log/logger.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -45,8 +45,8 @@ real_t MLPPMLPOld::modelTest(std::vector<real_t> x) {
void MLPPMLPOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -104,8 +104,8 @@ void MLPPMLPOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
void MLPPMLPOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -160,8 +160,8 @@ void MLPPMLPOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPMLPOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -241,13 +241,13 @@ void MLPPMLPOld::save(std::string fileName) {
}
real_t MLPPMLPOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg);
}
std::vector<real_t> MLPPMLPOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
@ -255,7 +255,7 @@ std::vector<real_t> MLPPMLPOld::Evaluate(std::vector<std::vector<real_t>> X) {
}
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPMLPOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
@ -263,7 +263,7 @@ std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> M
}
real_t MLPPMLPOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
@ -271,7 +271,7 @@ real_t MLPPMLPOld::Evaluate(std::vector<real_t> x) {
}
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPMLPOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
@ -279,7 +279,7 @@ std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPMLPOld::propagate(std::
}
void MLPPMLPOld::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1);
a2 = avn.sigmoid(z2);

View File

@ -5,7 +5,7 @@
//
#include "multi_output_layer_old.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -106,33 +106,33 @@ MLPPOldMultiOutputLayer::MLPPOldMultiOutputLayer(int p_n_output, int p_n_hidden,
activation_map["Arcoth"] = &MLPPActivationOld::arcoth;
activationTest_map["Arcoth"] = &MLPPActivationOld::arcoth;
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
cost_map["MSE"] = &MLPPCost::MSE;
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
cost_map["RMSE"] = &MLPPCost::RMSE;
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
cost_map["MAE"] = &MLPPCost::MAE;
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
cost_map["MBE"] = &MLPPCost::MBE;
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
cost_map["LogLoss"] = &MLPPCost::LogLoss;
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["MSE"] = &MLPPCostOld::MSEDeriv;
cost_map["MSE"] = &MLPPCostOld::MSE;
costDeriv_map["RMSE"] = &MLPPCostOld::RMSEDeriv;
cost_map["RMSE"] = &MLPPCostOld::RMSE;
costDeriv_map["MAE"] = &MLPPCostOld::MAEDeriv;
cost_map["MAE"] = &MLPPCostOld::MAE;
costDeriv_map["MBE"] = &MLPPCostOld::MBEDeriv;
cost_map["MBE"] = &MLPPCostOld::MBE;
costDeriv_map["LogLoss"] = &MLPPCostOld::LogLossDeriv;
cost_map["LogLoss"] = &MLPPCostOld::LogLoss;
costDeriv_map["CrossEntropy"] = &MLPPCostOld::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &MLPPCostOld::CrossEntropy;
costDeriv_map["HingeLoss"] = &MLPPCostOld::HingeLossDeriv;
cost_map["HingeLoss"] = &MLPPCostOld::HingeLoss;
costDeriv_map["WassersteinLoss"] = &MLPPCostOld::HingeLossDeriv;
cost_map["WassersteinLoss"] = &MLPPCostOld::HingeLoss;
}
void MLPPOldMultiOutputLayer::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
a = (avn.*activation_map[activation])(z, false);
}
void MLPPOldMultiOutputLayer::Test(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
a_test = (avn.*activationTest_map[activation])(z_test, false);

View File

@ -14,7 +14,7 @@
#include "core/object/reference.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../cost/cost_old.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
@ -44,8 +44,8 @@ public:
std::map<std::string, std::vector<std::vector<real_t>> (MLPPActivationOld::*)(std::vector<std::vector<real_t>>, bool)> activation_map;
std::map<std::string, std::vector<real_t> (MLPPActivationOld::*)(std::vector<real_t>, bool)> activationTest_map;
std::map<std::string, real_t (MLPPCost::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> cost_map;
std::map<std::string, std::vector<std::vector<real_t>> (MLPPCost::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> costDeriv_map;
std::map<std::string, real_t (MLPPCostOld::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> cost_map;
std::map<std::string, std::vector<std::vector<real_t>> (MLPPCostOld::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> costDeriv_map;
std::vector<real_t> z_test;
std::vector<real_t> a_test;

View File

@ -6,7 +6,7 @@
#include "multinomial_nb_old.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../utilities/utilities.h"
#include <algorithm>
@ -81,7 +81,7 @@ void MLPPMultinomialNBOld::computeTheta() {
}
void MLPPMultinomialNBOld::Evaluate() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
for (uint32_t i = 0; i < outputSet.size(); i++) {
// Pr(B | A) * Pr(A)
real_t score[class_num];

View File

@ -12,6 +12,7 @@
#include <iostream>
#include <string>
/*
real_t MLPPNumericalAnalysis::numDiff(real_t (*function)(real_t), real_t x) {
real_t eps = 1e-10;
return (function(x + eps) - function(x)) / eps; // This is just the formal def. of the derivative.
@ -164,16 +165,15 @@ real_t MLPPNumericalAnalysis::eulerianMethod(real_t (*derivative)(std::vector<re
}
real_t MLPPNumericalAnalysis::growthMethod(real_t C, real_t k, real_t t) {
/*
dP/dt = kP
dP/P = kdt
integral(1/P)dP = integral(k) dt
ln|P| = kt + C_initial
|P| = e^(kt + C_initial)
|P| = e^(C_initial) * e^(kt)
P = +/- e^(C_initial) * e^(kt)
P = C * e^(kt)
*/
//dP/dt = kP
//dP/P = kdt
//integral(1/P)dP = integral(k) dt
//ln|P| = kt + C_initial
//|P| = e^(kt + C_initial)
//|P| = e^(C_initial) * e^(kt)
//P = +/- e^(C_initial) * e^(kt)
//P = C * e^(kt)
// auto growthFunction = [&C, &k](real_t t) { return C * exp(k * t); };
return C * std::exp(k * t);
@ -240,15 +240,14 @@ real_t MLPPNumericalAnalysis::quadraticApproximation(real_t (*function)(std::vec
}
real_t MLPPNumericalAnalysis::cubicApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x) {
/*
Not completely sure as the literature seldom discusses the third order taylor approximation,
in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies
should look something like this:
//Not completely sure as the literature seldom discusses the third order taylor approximation,
//in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies
//should look something like this:
//(N x N x N) (N x 1) [tensor vector mult] => (N x N x 1) => (N x N)
//Perform remaining multiplies as done for the 2nd order approximation.
//Result is a scalar.
(N x N x N) (N x 1) [tensor vector mult] => (N x N x 1) => (N x N)
Perform remaining multiplies as done for the 2nd order approximation.
Result is a scalar.
*/
MLPPLinAlg alg;
std::vector<std::vector<real_t>> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c));
real_t resultScalar = alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(resultMat, alg.transpose({ alg.subtraction(x, c) })))[0][0];
@ -270,10 +269,10 @@ real_t MLPPNumericalAnalysis::laplacian(real_t (*function)(std::vector<real_t>),
std::string MLPPNumericalAnalysis::secondPartialDerivativeTest(real_t (*function)(std::vector<real_t>), std::vector<real_t> x) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> hessianMatrix = hessian(function, x);
/*
The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than
2, and the calculations specific to the bivariate case are less computationally intensive.
*/
// The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than
// 2, and the calculations specific to the bivariate case are less computationally intensive.
if (x.size() == 2) {
real_t det = alg.det(hessianMatrix, hessianMatrix.size());
real_t secondDerivative = numDiff_2(function, x, 0, 0);
@ -298,6 +297,7 @@ std::string MLPPNumericalAnalysis::secondPartialDerivativeTest(real_t (*function
}
}
}
*/
void MLPPNumericalAnalysis::_bind_methods() {
}

View File

@ -22,6 +22,7 @@ public:
as an analytical method for calculating derivatives will most likely be used in
the future.
*/
/*
real_t numDiff(real_t (*function)(real_t), real_t x);
real_t numDiff_2(real_t (*function)(real_t), real_t x);
real_t numDiff_3(real_t (*function)(real_t), real_t x);
@ -56,6 +57,7 @@ public:
real_t laplacian(real_t (*function)(std::vector<real_t>), std::vector<real_t> x); // laplacian
std::string secondPartialDerivativeTest(real_t (*function)(std::vector<real_t>), std::vector<real_t> x);
*/
protected:
static void _bind_methods();

View File

@ -5,7 +5,7 @@
//
#include "numerical_analysis_old.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include <climits>
#include <cmath>
@ -230,12 +230,12 @@ real_t MLPPNumericalAnalysisOld::constantApproximation(real_t (*function)(std::v
}
real_t MLPPNumericalAnalysisOld::linearApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return constantApproximation(function, c) + alg.matmult(alg.transpose({ jacobian(function, c) }), { alg.subtraction(x, c) })[0][0];
}
real_t MLPPNumericalAnalysisOld::quadraticApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return linearApproximation(function, c, x) + 0.5 * alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(hessian(function, c), alg.transpose({ alg.subtraction(x, c) })))[0][0];
}
@ -249,7 +249,7 @@ real_t MLPPNumericalAnalysisOld::cubicApproximation(real_t (*function)(std::vect
Perform remaining multiplies as done for the 2nd order approximation.
Result is a scalar.
*/
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c));
real_t resultScalar = alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(resultMat, alg.transpose({ alg.subtraction(x, c) })))[0][0];
@ -268,7 +268,7 @@ real_t MLPPNumericalAnalysisOld::laplacian(real_t (*function)(std::vector<real_t
}
std::string MLPPNumericalAnalysisOld::secondPartialDerivativeTest(real_t (*function)(std::vector<real_t>), std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> hessianMatrix = hessian(function, x);
/*
The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than

View File

@ -6,7 +6,7 @@
#include "outlier_finder_old.h"
#include "../stat/stat.h"
#include "../stat/stat_old.h"
#include <iostream>
@ -15,7 +15,7 @@ MLPPOutlierFinderOld::MLPPOutlierFinderOld(int threshold) :
}
std::vector<std::vector<real_t>> MLPPOutlierFinderOld::modelSetTest(std::vector<std::vector<real_t>> inputSet) {
MLPPStat stat;
MLPPStatOld stat;
std::vector<std::vector<real_t>> outliers;
outliers.resize(inputSet.size());
for (uint32_t i = 0; i < inputSet.size(); i++) {
@ -30,7 +30,7 @@ std::vector<std::vector<real_t>> MLPPOutlierFinderOld::modelSetTest(std::vector<
}
std::vector<real_t> MLPPOutlierFinderOld::modelTest(std::vector<real_t> inputSet) {
MLPPStat stat;
MLPPStatOld stat;
std::vector<real_t> outliers;
for (uint32_t i = 0; i < inputSet.size(); i++) {
real_t z = (inputSet[i] - stat.mean(inputSet)) / stat.standardDeviation(inputSet);

View File

@ -5,7 +5,7 @@
//
#include "output_layer_old.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -102,33 +102,33 @@ MLPPOldOutputLayer::MLPPOldOutputLayer(int p_n_hidden, std::string p_activation,
activation_map["Arcoth"] = &MLPPActivationOld::arcoth;
activationTest_map["Arcoth"] = &MLPPActivationOld::arcoth;
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
cost_map["MSE"] = &MLPPCost::MSE;
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
cost_map["RMSE"] = &MLPPCost::RMSE;
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
cost_map["MAE"] = &MLPPCost::MAE;
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
cost_map["MBE"] = &MLPPCost::MBE;
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
cost_map["LogLoss"] = &MLPPCost::LogLoss;
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["MSE"] = &MLPPCostOld::MSEDeriv;
cost_map["MSE"] = &MLPPCostOld::MSE;
costDeriv_map["RMSE"] = &MLPPCostOld::RMSEDeriv;
cost_map["RMSE"] = &MLPPCostOld::RMSE;
costDeriv_map["MAE"] = &MLPPCostOld::MAEDeriv;
cost_map["MAE"] = &MLPPCostOld::MAE;
costDeriv_map["MBE"] = &MLPPCostOld::MBEDeriv;
cost_map["MBE"] = &MLPPCostOld::MBE;
costDeriv_map["LogLoss"] = &MLPPCostOld::LogLossDeriv;
cost_map["LogLoss"] = &MLPPCostOld::LogLoss;
costDeriv_map["CrossEntropy"] = &MLPPCostOld::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &MLPPCostOld::CrossEntropy;
costDeriv_map["HingeLoss"] = &MLPPCostOld::HingeLossDeriv;
cost_map["HingeLoss"] = &MLPPCostOld::HingeLoss;
costDeriv_map["WassersteinLoss"] = &MLPPCostOld::HingeLossDeriv;
cost_map["WassersteinLoss"] = &MLPPCostOld::HingeLoss;
}
void MLPPOldOutputLayer::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z = alg.scalarAdd(bias, alg.mat_vec_mult(input, weights));
a = (avn.*activation_map[activation])(z, false);
}
void MLPPOldOutputLayer::Test(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z_test = alg.dot(weights, x) + bias;
a_test = (avn.*activationTest_map[activation])(z_test, false);

View File

@ -14,7 +14,7 @@
#include "core/object/reference.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../cost/cost_old.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
@ -43,8 +43,8 @@ public:
std::map<std::string, std::vector<real_t> (MLPPActivationOld::*)(std::vector<real_t>, bool)> activation_map;
std::map<std::string, real_t (MLPPActivationOld::*)(real_t, bool)> activationTest_map;
std::map<std::string, real_t (MLPPCost::*)(std::vector<real_t>, std::vector<real_t>)> cost_map;
std::map<std::string, std::vector<real_t> (MLPPCost::*)(std::vector<real_t>, std::vector<real_t>)> costDeriv_map;
std::map<std::string, real_t (MLPPCostOld::*)(std::vector<real_t>, std::vector<real_t>)> cost_map;
std::map<std::string, std::vector<real_t> (MLPPCostOld::*)(std::vector<real_t>, std::vector<real_t>)> costDeriv_map;
real_t z_test;
real_t a_test;

View File

@ -6,7 +6,7 @@
#include "pca_old.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include <iostream>
#include <random>
@ -18,10 +18,10 @@ MLPPPCAOld::MLPPPCAOld(std::vector<std::vector<real_t>> inputSet, int k) :
}
std::vector<std::vector<real_t>> MLPPPCAOld::principalComponents() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
MLPPLinAlg::SVDResultOld svr_res = alg.SVD(alg.cov(inputSet));
MLPPLinAlgOld::SVDResultOld svr_res = alg.SVD(alg.cov(inputSet));
X_normalized = data.meanCentering(inputSet);
U_reduce.resize(svr_res.U.size());
for (int i = 0; i < k; i++) {
@ -35,7 +35,7 @@ std::vector<std::vector<real_t>> MLPPPCAOld::principalComponents() {
// Simply tells us the percentage of variance maintained.
real_t MLPPPCAOld::score() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> X_approx = alg.matmult(U_reduce, Z);
real_t num = 0;
real_t den = 0;

View File

@ -6,9 +6,9 @@
#include "probit_reg_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -31,8 +31,8 @@ real_t MLPPProbitRegOld::modelTest(std::vector<real_t> x) {
void MLPPProbitRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -64,8 +64,8 @@ void MLPPProbitRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool
void MLPPProbitRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -97,8 +97,8 @@ void MLPPProbitRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
void MLPPProbitRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
// NOTE: ∂y_hat/∂z is sparse
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -138,8 +138,8 @@ void MLPPProbitRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPProbitRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -208,30 +208,30 @@ void MLPPProbitRegOld::save(std::string fileName) {
}
real_t MLPPProbitRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPProbitRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.gaussianCDF(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
std::vector<real_t> MLPPProbitRegOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
real_t MLPPProbitRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.gaussianCDF(alg.dot(weights, x) + bias);
}
real_t MLPPProbitRegOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.dot(weights, x) + bias;
}

View File

@ -211,154 +211,3 @@ real_t MLPPReg::reg_deriv_termmr(const Ref<MLPPMatrix> &weights, real_t lambda,
return 0;
}
}
real_t MLPPReg::regTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string p_reg) {
if (p_reg == "Ridge") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += weights[i] * weights[i];
}
return reg * lambda / 2;
} else if (p_reg == "Lasso") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += abs(weights[i]);
}
return reg * lambda;
} else if (p_reg == "ElasticNet") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += alpha * abs(weights[i]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg
}
return reg * lambda;
}
return 0;
}
real_t MLPPReg::regTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string p_reg) {
if (p_reg == "Ridge") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += weights[i][j] * weights[i][j];
}
}
return reg * lambda / 2;
} else if (p_reg == "Lasso") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += abs(weights[i][j]);
}
}
return reg * lambda;
} else if (p_reg == "ElasticNet") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += alpha * abs(weights[i][j]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg
}
}
return reg * lambda;
}
return 0;
}
std::vector<real_t> MLPPReg::regWeights(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg) {
MLPPLinAlg alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
// }
// return weights;
}
std::vector<std::vector<real_t>> MLPPReg::regWeights(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg) {
MLPPLinAlg alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// for(int j = 0; j < weights[i].size(); j++){
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
// }
// }
// return weights;
}
std::vector<real_t> MLPPReg::regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg) {
std::vector<real_t> regDeriv;
regDeriv.resize(weights.size());
for (uint32_t i = 0; i < regDeriv.size(); i++) {
regDeriv[i] = regDerivTerm(weights, lambda, alpha, reg, i);
}
return regDeriv;
}
std::vector<std::vector<real_t>> MLPPReg::regDerivTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg) {
std::vector<std::vector<real_t>> regDeriv;
regDeriv.resize(weights.size());
for (uint32_t i = 0; i < regDeriv.size(); i++) {
regDeriv[i].resize(weights[0].size());
}
for (uint32_t i = 0; i < regDeriv.size(); i++) {
for (uint32_t j = 0; j < regDeriv[i].size(); j++) {
regDeriv[i][j] = regDerivTerm(weights, lambda, alpha, reg, i, j);
}
}
return regDeriv;
}
real_t MLPPReg::regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg, int j) {
MLPPActivation act;
if (reg == "Ridge") {
return lambda * weights[j];
} else if (reg == "Lasso") {
return lambda * act.sign_normr(weights[j]);
} else if (reg == "ElasticNet") {
return alpha * lambda * act.sign_normr(weights[j]) + (1 - alpha) * lambda * weights[j];
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (weights[j] > alpha) {
return alpha;
} else if (weights[j] < lambda) {
return lambda;
} else {
return weights[j];
}
} else {
return 0;
}
}
real_t MLPPReg::regDerivTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg, int i, int j) {
MLPPActivation act;
if (reg == "Ridge") {
return lambda * weights[i][j];
} else if (reg == "Lasso") {
return lambda * act.sign_normr(weights[i][j]);
} else if (reg == "ElasticNet") {
return alpha * lambda * act.sign_normr(weights[i][j]) + (1 - alpha) * lambda * weights[i][j];
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (weights[i][j] > alpha) {
return alpha;
} else if (weights[i][j] < lambda) {
return lambda;
} else {
return weights[i][j];
}
} else {
return 0;
}
}

View File

@ -49,22 +49,6 @@ protected:
private:
real_t reg_deriv_termvr(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, RegularizationType reg, int j);
real_t reg_deriv_termmr(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, RegularizationType reg, int i, int j);
public:
// ======== OLD =========
real_t regTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg);
real_t regTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg);
std::vector<real_t> regWeights(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg);
std::vector<std::vector<real_t>> regWeights(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg);
std::vector<real_t> regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg);
std::vector<std::vector<real_t>> regDerivTerm(std::vector<std::vector<real_t>>, real_t lambda, real_t alpha, std::string reg);
private:
real_t regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg, int j);
real_t regDerivTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg, int i, int j);
};
VARIANT_ENUM_CAST(MLPPReg::RegularizationType);

View File

@ -9,13 +9,67 @@
#include "core/math/math_defs.h"
#include "../activation/activation_old.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include <iostream>
#include <random>
real_t MLPPRegOld::regTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string p_reg) {
if (p_reg == "Ridge") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += weights[i] * weights[i];
}
return reg * lambda / 2;
} else if (p_reg == "Lasso") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += abs(weights[i]);
}
return reg * lambda;
} else if (p_reg == "ElasticNet") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += alpha * abs(weights[i]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg
}
return reg * lambda;
}
return 0;
}
real_t MLPPRegOld::regTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string p_reg) {
if (p_reg == "Ridge") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += weights[i][j] * weights[i][j];
}
}
return reg * lambda / 2;
} else if (p_reg == "Lasso") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += abs(weights[i][j]);
}
}
return reg * lambda;
} else if (p_reg == "ElasticNet") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += alpha * abs(weights[i][j]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg
}
}
return reg * lambda;
}
return 0;
}
std::vector<real_t> MLPPRegOld::regWeights(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}
@ -27,7 +81,7 @@ std::vector<real_t> MLPPRegOld::regWeights(std::vector<real_t> weights, real_t l
}
std::vector<std::vector<real_t>> MLPPRegOld::regWeights(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}

View File

@ -16,8 +16,6 @@
class MLPPRegOld {
public:
// ======== OLD =========
real_t regTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg);
real_t regTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg);

View File

@ -7,10 +7,10 @@
#include "softmax_net_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../cost/cost_old.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -45,8 +45,8 @@ std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::modelSetTest(std::vector<std
void MLPPSoftmaxNetOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -101,8 +101,8 @@ void MLPPSoftmaxNetOld::gradientDescent(real_t learning_rate, int max_epoch, boo
void MLPPSoftmaxNetOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -159,8 +159,8 @@ void MLPPSoftmaxNetOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPSoftmaxNetOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -262,14 +262,14 @@ std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::getEmbeddings() {
}
real_t MLPPSoftmaxNetOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPReg regularization;
MLPPRegOld regularization;
MLPPData data;
class MLPPCost cost;
class MLPPCostOld cost;
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights1, lambda, alpha, reg) + regularization.regTerm(weights2, lambda, alpha, reg);
}
std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
@ -277,7 +277,7 @@ std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::Evaluate(std::vector<std::ve
}
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPSoftmaxNetOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
@ -285,7 +285,7 @@ std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> M
}
std::vector<real_t> MLPPSoftmaxNetOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
@ -293,7 +293,7 @@ std::vector<real_t> MLPPSoftmaxNetOld::Evaluate(std::vector<real_t> x) {
}
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPSoftmaxNetOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
@ -301,7 +301,7 @@ std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPSoftmaxNetOld::propagat
}
void MLPPSoftmaxNetOld::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1);
a2 = avn.sigmoid(z2);

View File

@ -6,9 +6,9 @@
#include "softmax_reg_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -30,8 +30,8 @@ std::vector<std::vector<real_t>> MLPPSoftmaxRegOld::modelSetTest(std::vector<std
}
void MLPPSoftmaxRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -69,8 +69,8 @@ void MLPPSoftmaxRegOld::gradientDescent(real_t learning_rate, int max_epoch, boo
}
void MLPPSoftmaxRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -113,8 +113,8 @@ void MLPPSoftmaxRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPSoftmaxRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -166,19 +166,19 @@ void MLPPSoftmaxRegOld::save(std::string fileName) {
}
real_t MLPPSoftmaxRegOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPSoftmaxRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.softmax(alg.addition(bias, alg.mat_vec_mult(alg.transpose(weights), x)));
}
std::vector<std::vector<real_t>> MLPPSoftmaxRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.softmax(alg.mat_vec_add(alg.matmult(X, weights), bias));
@ -186,7 +186,7 @@ std::vector<std::vector<real_t>> MLPPSoftmaxRegOld::Evaluate(std::vector<std::ve
// softmax ( wTx + b )
void MLPPSoftmaxRegOld::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
y_hat = avn.softmax(alg.mat_vec_add(alg.matmult(inputSet, weights), bias));

View File

@ -14,14 +14,6 @@
#include <iostream>
real_t MLPPStat::b0Estimation(const std::vector<real_t> &x, const std::vector<real_t> &y) {
return mean(y) - b1Estimation(x, y) * mean(x);
}
real_t MLPPStat::b1Estimation(const std::vector<real_t> &x, const std::vector<real_t> &y) {
return covariance(x, y) / variance(x);
}
real_t MLPPStat::b0_estimation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y) {
return meanv(y) - b1_estimation(x, y) * meanv(x);
}
@ -29,14 +21,7 @@ real_t MLPPStat::b1_estimation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &
return covariancev(x, y) / variancev(x);
}
real_t MLPPStat::mean(const std::vector<real_t> &x) {
real_t sum = 0;
for (uint32_t i = 0; i < x.size(); i++) {
sum += x[i];
}
return sum / x.size();
}
/*
real_t MLPPStat::median(std::vector<real_t> x) {
real_t center = real_t(x.size()) / real_t(2);
sort(x.begin(), x.end());
@ -88,26 +73,6 @@ real_t MLPPStat::absAvgDeviation(const std::vector<real_t> &x) {
return sum / x.size();
}
real_t MLPPStat::standardDeviation(const std::vector<real_t> &x) {
return std::sqrt(variance(x));
}
real_t MLPPStat::variance(const std::vector<real_t> &x) {
real_t sum = 0;
for (uint32_t i = 0; i < x.size(); i++) {
sum += (x[i] - mean(x)) * (x[i] - mean(x));
}
return sum / (x.size() - 1);
}
real_t MLPPStat::covariance(const std::vector<real_t> &x, const std::vector<real_t> &y) {
real_t sum = 0;
for (uint32_t i = 0; i < x.size(); i++) {
sum += (x[i] - mean(x)) * (y[i] - mean(y));
}
return sum / (x.size() - 1);
}
real_t MLPPStat::correlation(const std::vector<real_t> &x, const std::vector<real_t> &y) {
return covariance(x, y) / (standardDeviation(x) * standardDeviation(y));
}
@ -120,6 +85,7 @@ real_t MLPPStat::chebyshevIneq(const real_t k) {
// X may or may not belong to a Gaussian Distribution
return 1 - 1 / (k * k);
}
*/
real_t MLPPStat::meanv(const Ref<MLPPVector> &x) {
int x_size = x->size();
@ -171,6 +137,7 @@ real_t MLPPStat::covariancev(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y)
return sum / (x_size - 1);
}
/*
real_t MLPPStat::weightedMean(const std::vector<real_t> &x, const std::vector<real_t> &weights) {
real_t sum = 0;
real_t weights_sum = 0;
@ -270,6 +237,7 @@ real_t MLPPStat::logMean(const real_t x, const real_t y) {
}
return (y - x) / (log(y) - std::log(x));
}
*/
void MLPPStat::_bind_methods() {
}

View File

@ -22,25 +22,20 @@ class MLPPStat : public Reference {
public:
// These functions are for univariate lin reg module- not for users.
real_t b0Estimation(const std::vector<real_t> &x, const std::vector<real_t> &y);
real_t b1Estimation(const std::vector<real_t> &x, const std::vector<real_t> &y);
real_t b0_estimation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y);
real_t b1_estimation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y);
// Statistical Functions
real_t mean(const std::vector<real_t> &x);
/*
real_t median(std::vector<real_t> x);
std::vector<real_t> mode(const std::vector<real_t> &x);
real_t range(const std::vector<real_t> &x);
real_t midrange(const std::vector<real_t> &x);
real_t absAvgDeviation(const std::vector<real_t> &x);
real_t standardDeviation(const std::vector<real_t> &x);
real_t variance(const std::vector<real_t> &x);
real_t covariance(const std::vector<real_t> &x, const std::vector<real_t> &y);
real_t correlation(const std::vector<real_t> &x, const std::vector<real_t> &y);
real_t R2(const std::vector<real_t> &x, const std::vector<real_t> &y);
real_t chebyshevIneq(const real_t k);
*/
real_t meanv(const Ref<MLPPVector> &x);
real_t standard_deviationv(const Ref<MLPPVector> &x);
@ -48,6 +43,7 @@ public:
real_t covariancev(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y);
// Extras
/*
real_t weightedMean(const std::vector<real_t> &x, const std::vector<real_t> &weights);
real_t geometricMean(const std::vector<real_t> &x);
real_t harmonicMean(const std::vector<real_t> &x);
@ -62,6 +58,7 @@ public:
real_t stolarskyMean(const real_t x, const real_t y, const real_t p);
real_t identricMean(const real_t x, const real_t y);
real_t logMean(const real_t x, const real_t y);
*/
protected:
static void _bind_methods();

View File

@ -7,7 +7,7 @@
#include "stat_old.h"
#include "../activation/activation_old.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include <algorithm>
#include <cmath>
#include <map>
@ -65,7 +65,7 @@ std::vector<real_t> MLPPStatOld::mode(const std::vector<real_t> &x) {
}
real_t MLPPStatOld::range(const std::vector<real_t> &x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.max(x) - alg.min(x);
}

View File

@ -6,9 +6,9 @@
#include "svc_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -23,9 +23,9 @@ real_t MLPPSVCOld::modelTest(std::vector<real_t> x) {
}
void MLPPSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
MLPPReg regularization;
class MLPPCostOld cost;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -55,9 +55,9 @@ void MLPPSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPSVCOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
MLPPReg regularization;
class MLPPCostOld cost;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -98,9 +98,9 @@ void MLPPSVCOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPSVCOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
MLPPReg regularization;
class MLPPCostOld cost;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -163,29 +163,29 @@ MLPPSVCOld::MLPPSVCOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<
}
real_t MLPPSVCOld::Cost(std::vector<real_t> z, std::vector<real_t> y, std::vector<real_t> weights, real_t C) {
class MLPPCost cost;
class MLPPCostOld cost;
return cost.HingeLoss(z, y, weights, C);
}
std::vector<real_t> MLPPSVCOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.sign(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
std::vector<real_t> MLPPSVCOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
real_t MLPPSVCOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.sign(alg.dot(weights, x) + bias);
}
real_t MLPPSVCOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.dot(weights, x) + bias;
}

View File

@ -7,9 +7,9 @@
#include "tanh_reg_old.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <iostream>
@ -32,8 +32,8 @@ real_t MLPPTanhRegOld::modelTest(std::vector<real_t> x) {
void MLPPTanhRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -65,8 +65,8 @@ void MLPPTanhRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool U
}
void MLPPTanhRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -105,8 +105,8 @@ void MLPPTanhRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPTanhRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
real_t cost_prev = 0;
int epoch = 1;
@ -160,30 +160,30 @@ void MLPPTanhRegOld::save(std::string fileName) {
}
real_t MLPPTanhRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPTanhRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.tanh(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
std::vector<real_t> MLPPTanhRegOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
real_t MLPPTanhRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPActivationOld avn;
return avn.tanh(alg.dot(weights, x) + bias);
}
real_t MLPPTanhRegOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.dot(weights, x) + bias;
}

View File

@ -10,6 +10,7 @@
#include <iostream>
#include <string>
/*
// DCT ii.
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
std::vector<std::vector<real_t>> MLPPTransforms::discreteCosineTransform(std::vector<std::vector<real_t>> A) {
@ -51,6 +52,7 @@ std::vector<std::vector<real_t>> MLPPTransforms::discreteCosineTransform(std::ve
}
return B;
}
*/
void MLPPTransforms::_bind_methods() {
}

View File

@ -18,7 +18,7 @@ class MLPPTransforms : public Reference {
GDCLASS(MLPPTransforms, Reference);
public:
std::vector<std::vector<real_t>> discreteCosineTransform(std::vector<std::vector<real_t>> A);
//std::vector<std::vector<real_t>> discreteCosineTransform(std::vector<std::vector<real_t>> A);
protected:
static void _bind_methods();

View File

@ -5,7 +5,7 @@
//
#include "transforms_old.h"
#include "../lin_alg/lin_alg.h"
#include "../lin_alg/lin_alg_old.h"
#include <cmath>
#include <iostream>
#include <string>
@ -13,7 +13,7 @@
// DCT ii.
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
std::vector<std::vector<real_t>> MLPPTransformsOld::discreteCosineTransform(std::vector<std::vector<real_t>> A) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
A = alg.scalarAdd(-128, A); // Center around 0.
std::vector<std::vector<real_t>> B;

View File

@ -6,8 +6,8 @@
#include "uni_lin_reg_old.h"
#include "../lin_alg/lin_alg.h"
#include "../stat/stat.h"
#include "../lin_alg/lin_alg_old.h"
#include "../stat/stat_old.h"
#include <iostream>
@ -19,13 +19,13 @@
MLPPUniLinRegOld::MLPPUniLinRegOld(std::vector<real_t> x, std::vector<real_t> y) :
inputSet(x), outputSet(y) {
MLPPStat estimator;
MLPPStatOld estimator;
b1 = estimator.b1Estimation(inputSet, outputSet);
b0 = estimator.b0Estimation(inputSet, outputSet);
}
std::vector<real_t> MLPPUniLinRegOld::modelSetTest(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return alg.scalarAdd(b0, alg.scalarMultiply(b1, x));
}

View File

@ -77,7 +77,7 @@ void MLPPWGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
Vector<Ref<MLPPMatrix>> cumulative_discriminator_hidden_layer_w_grad = discriminator_gradient_results.cumulative_hidden_layer_w_grad;
Ref<MLPPVector> output_discriminator_w_grad = discriminator_gradient_results.output_w_grad;
cumulative_discriminator_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, cumulative_discriminator_hidden_layer_w_grad);
cumulative_discriminator_hidden_layer_w_grad = alg.scalar_multiplynvt(learning_rate / _n, cumulative_discriminator_hidden_layer_w_grad);
output_discriminator_w_grad = alg.scalar_multiplynv(learning_rate / _n, output_discriminator_w_grad);
update_discriminator_parameters(cumulative_discriminator_hidden_layer_w_grad, output_discriminator_w_grad, learning_rate);
}
@ -89,7 +89,7 @@ void MLPPWGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
loutput_set = alg.onevecnv(_n);
Vector<Ref<MLPPMatrix>> cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(_y_hat, loutput_set);
cumulative_generator_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, cumulative_generator_hidden_layer_w_grad);
cumulative_generator_hidden_layer_w_grad = alg.scalar_multiplynvt(learning_rate / _n, cumulative_generator_hidden_layer_w_grad);
update_generator_parameters(cumulative_generator_hidden_layer_w_grad, learning_rate);
forward_pass();

View File

@ -9,9 +9,9 @@
#include "core/log/logger.h"
#include "../activation/activation_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../cost/cost_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include "core/object/method_bind_ext.gen.inc"
@ -28,13 +28,12 @@ MLPPWGANOld::~MLPPWGANOld() {
}
std::vector<std::vector<real_t>> MLPPWGANOld::generateExample(int n) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
return modelSetTestGenerator(alg.gaussianNoise(n, k));
}
void MLPPWGANOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
@ -94,7 +93,7 @@ void MLPPWGANOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI)
}
real_t MLPPWGANOld::score() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPUtilities util;
forwardPass();
return util.performance(y_hat, alg.onevec(n));
@ -114,7 +113,7 @@ void MLPPWGANOld::save(std::string fileName) {
}
void MLPPWGANOld::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (network.empty()) {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha));
network[0].forwardPass();
@ -125,7 +124,7 @@ void MLPPWGANOld::addLayer(int n_hidden, std::string activation, std::string wei
}
void MLPPWGANOld::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (!network.empty()) {
outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, "Linear", "WassersteinLoss", network[network.size() - 1].a, weightInit, "WeightClipping", -0.01, 0.01);
} else { // Should never happen.
@ -163,8 +162,8 @@ std::vector<real_t> MLPPWGANOld::modelSetTestDiscriminator(std::vector<std::vect
}
real_t MLPPWGANOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
MLPPRegOld regularization;
class MLPPCostOld cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
@ -177,7 +176,7 @@ real_t MLPPWGANOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
}
void MLPPWGANOld::forwardPass() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (!network.empty()) {
network[0].input = alg.gaussianNoise(n, k);
network[0].forwardPass();
@ -195,7 +194,7 @@ void MLPPWGANOld::forwardPass() {
}
void MLPPWGANOld::updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation);
outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n;
@ -212,7 +211,7 @@ void MLPPWGANOld::updateDiscriminatorParameters(std::vector<std::vector<std::vec
}
void MLPPWGANOld::updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
if (!network.empty()) {
for (int ii = network.size() / 2; ii >= 0; ii--) {
@ -227,10 +226,10 @@ void MLPPWGANOld::updateGeneratorParameters(std::vector<std::vector<std::vector<
}
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPWGANOld::computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
class MLPPCost cost;
class MLPPCostOld cost;
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
@ -262,10 +261,10 @@ std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> M
}
std::vector<std::vector<std::vector<real_t>>> MLPPWGANOld::computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
class MLPPCost cost;
class MLPPCostOld cost;
MLPPActivationOld avn;
MLPPLinAlg alg;
MLPPReg regularization;
MLPPLinAlgOld alg;
MLPPRegOld regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.

View File

@ -22,7 +22,7 @@
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../regularization/reg.h"
#include "../regularization/reg_old.h"
#include "../utilities/utilities.h"
#include <string>

View File

@ -52,6 +52,9 @@
#include "../mlpp/auto_encoder/auto_encoder_old.h"
#include "../mlpp/bernoulli_nb/bernoulli_nb_old.h"
#include "../mlpp/c_log_log_reg/c_log_log_reg_old.h"
#include "../mlpp/convolutions/convolutions_old.h"
#include "../mlpp/cost/cost_old.h"
#include "../mlpp/data/data_old.h"
#include "../mlpp/dual_svc/dual_svc_old.h"
#include "../mlpp/exp_reg/exp_reg_old.h"
#include "../mlpp/gan/gan_old.h"
@ -71,8 +74,10 @@
#include "../mlpp/probit_reg/probit_reg_old.h"
#include "../mlpp/softmax_net/softmax_net_old.h"
#include "../mlpp/softmax_reg/softmax_reg_old.h"
#include "../mlpp/stat/stat_old.h"
#include "../mlpp/svc/svc_old.h"
#include "../mlpp/tanh_reg/tanh_reg_old.h"
#include "../mlpp/transforms/transforms_old.h"
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
#include "../mlpp/wgan/wgan_old.h"
@ -102,7 +107,7 @@ Vector<Vector<real_t>> dstd_mat_to_mat(const std::vector<std::vector<real_t>> &i
void MLPPTests::test_statistics() {
ERR_PRINT("MLPPTests::test_statistics() Started!");
MLPPStat stat;
MLPPStatOld stat;
MLPPConvolutions conv;
// STATISTICS
@ -146,7 +151,7 @@ void MLPPTests::test_statistics() {
}
void MLPPTests::test_linear_algebra() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> square = { { 1, 1 }, { -1, 1 }, { 1, -1 }, { -1, -1 } };
std::vector<std::vector<real_t>> square_rot_res = { { 1.41421, 1.11022e-16 }, { -1.11022e-16, 1.41421 }, { 1.11022e-16, -1.41421 }, { -1.41421, -1.11022e-16 } };
@ -242,7 +247,7 @@ void MLPPTests::test_univariate_linear_regression() {
void MLPPTests::test_multivariate_linear_regression_gradient_descent(bool ui) {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -257,7 +262,7 @@ void MLPPTests::test_multivariate_linear_regression_gradient_descent(bool ui) {
void MLPPTests::test_multivariate_linear_regression_sgd(bool ui) {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -272,7 +277,7 @@ void MLPPTests::test_multivariate_linear_regression_sgd(bool ui) {
void MLPPTests::test_multivariate_linear_regression_mbgd(bool ui) {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -287,7 +292,7 @@ void MLPPTests::test_multivariate_linear_regression_mbgd(bool ui) {
void MLPPTests::test_multivariate_linear_regression_normal_equation(bool ui) {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -302,7 +307,8 @@ void MLPPTests::test_multivariate_linear_regression_normal_equation(bool ui) {
void MLPPTests::test_multivariate_linear_regression_adam() {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -310,14 +316,15 @@ void MLPPTests::test_multivariate_linear_regression_adam() {
alg.printVector(adamModelOld.modelSetTest(ds->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * adamModelOld.score() << "%" << std::endl;
MLPPLinReg adam_model(alg.transposenm(ds->get_input()), ds->get_output());
MLPPLinReg adam_model(algn.transposenm(ds->get_input()), ds->get_output());
PLOG_MSG(adam_model.model_set_test(ds->get_input())->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * adam_model.score()) + "%");
}
void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -330,7 +337,7 @@ void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) {
modelf_old.MBGD(0.001, 5, 1, ui);
scoreSGD += modelf_old.score();
MLPPLinReg modelf(alg.transposenm(ds->get_input()), ds->get_output());
MLPPLinReg modelf(algn.transposenm(ds->get_input()), ds->get_output());
modelf.mbgd(0.001, 5, 1, ui);
scoreSGD += modelf.score();
@ -338,7 +345,7 @@ void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) {
adamModelf_old.Adam(0.1, 5, 1, 0.9, 0.999, 1e-8, ui); // Change batch size = sgd, bgd
scoreADAM += adamModelf_old.score();
MLPPLinReg adamModelf(alg.transposenm(ds->get_input()), ds->get_output());
MLPPLinReg adamModelf(algn.transposenm(ds->get_input()), ds->get_output());
adamModelf.adam(0.1, 5, 1, 0.9, 0.999, 1e-8, ui); // Change batch size = sgd, bgd
scoreADAM += adamModelf.score();
}
@ -350,7 +357,8 @@ void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) {
void MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent(bool ui) {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -361,14 +369,15 @@ void MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent(bool
model3_old.gradientDescent(0.001, 300, ui);
alg.printVector(model3_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model3(alg.transposenm(ds->get_input()), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg
MLPPLinReg model3(algn.transposenm(ds->get_input()), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg
model3.gradient_descent(0.001, 300, ui);
PLOG_MSG(model3.model_set_test(ds->get_input())->to_string());
}
void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) {
MLPPData data;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -380,13 +389,13 @@ void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) {
model2_old.NewtonRaphson(1.5, 300, ui);
alg.printVector(model2_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model2(alg.transposenm(ds->get_input()), ds->get_output());
MLPPLinReg model2(algn.transposenm(ds->get_input()), ds->get_output());
model2.newton_raphson(1.5, 300, ui);
PLOG_MSG(model2.model_set_test(ds->get_input())->to_string());
}
void MLPPTests::test_logistic_regression(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
@ -404,7 +413,7 @@ void MLPPTests::test_logistic_regression(bool ui) {
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
}
void MLPPTests::test_probit_regression(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
// PROBIT REGRESSION
@ -421,7 +430,8 @@ void MLPPTests::test_probit_regression(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
}
void MLPPTests::test_c_log_log_regression(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
// CLOGLOG REGRESSION
std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } };
@ -440,13 +450,14 @@ void MLPPTests::test_c_log_log_regression(bool ui) {
output_set.instance();
output_set->set_from_std_vector(outputSet);
MLPPCLogLogReg model(alg.transposenm(input_set), output_set);
MLPPCLogLogReg model(algn.transposenm(input_set), output_set);
model.sgd(0.1, 10000, ui);
PLOG_MSG(model.model_set_test(alg.transposenm(input_set))->to_string());
PLOG_MSG(model.model_set_test(algn.transposenm(input_set))->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
}
void MLPPTests::test_exp_reg_regression(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
// EXPREG REGRESSION
std::vector<std::vector<real_t>> inputSet = { { 0, 1, 2, 3, 4 } };
@ -465,13 +476,13 @@ void MLPPTests::test_exp_reg_regression(bool ui) {
output_set.instance();
output_set->set_from_std_vector(outputSet);
MLPPExpReg model(alg.transposenm(input_set), output_set);
MLPPExpReg model(algn.transposenm(input_set), output_set);
model.sgd(0.001, 10000, ui);
PLOG_MSG(model.model_set_test(alg.transposenm(input_set))->to_string());
PLOG_MSG(model.model_set_test(algn.transposenm(input_set))->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
}
void MLPPTests::test_tanh_regression(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
// TANH REGRESSION
std::vector<std::vector<real_t>> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } };
@ -483,7 +494,7 @@ void MLPPTests::test_tanh_regression(bool ui) {
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
}
void MLPPTests::test_softmax_regression(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
Ref<MLPPDataComplex> dt = data.load_iris(_iris_data_path);
@ -502,7 +513,7 @@ void MLPPTests::test_softmax_regression(bool ui) {
}
void MLPPTests::test_support_vector_classification(bool ui) {
//MLPPStat stat;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
//MLPPActivation avn;
//MLPPCost cost;
MLPPData data;
@ -523,7 +534,7 @@ void MLPPTests::test_support_vector_classification(bool ui) {
}
void MLPPTests::test_mlp(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
// MLP
std::vector<std::vector<real_t>> inputSet = {
@ -569,7 +580,7 @@ void MLPPTests::test_mlp(bool ui) {
PLOG_MSG(res);
}
void MLPPTests::test_soft_max_network(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
// SOFTMAX NETWORK
@ -586,7 +597,8 @@ void MLPPTests::test_soft_max_network(bool ui) {
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
}
void MLPPTests::test_autoencoder(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } };
@ -600,13 +612,14 @@ void MLPPTests::test_autoencoder(bool ui) {
input_set.instance();
input_set->set_from_std_vectors(inputSet);
MLPPAutoEncoder model(alg.transposenm(input_set), 5);
MLPPAutoEncoder model(algn.transposenm(input_set), 5);
model.sgd(0.001, 300000, ui);
PLOG_MSG(model.model_set_test(alg.transposenm(input_set))->to_string());
PLOG_MSG(model.model_set_test(algn.transposenm(input_set))->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
}
void MLPPTests::test_dynamically_sized_ann(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
// DYNAMICALLY SIZED ANN
// Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform
@ -636,7 +649,7 @@ void MLPPTests::test_dynamically_sized_ann(bool ui) {
output_set.instance();
output_set->set_from_std_vector(outputSet);
MLPPANN ann(alg.transposenm(input_set), output_set);
MLPPANN ann(algn.transposenm(input_set), output_set);
ann.add_layer(2, MLPPActivation::ACTIVATION_FUNCTION_COSH);
ann.add_output_layer(MLPPActivation::ACTIVATION_FUNCTION_SIGMOID, MLPPCost::COST_TYPE_LOGISTIC_LOSS);
@ -646,12 +659,12 @@ void MLPPTests::test_dynamically_sized_ann(bool ui) {
ann.set_learning_rate_scheduler_drop(MLPPANN::SCHEDULER_TYPE_STEP, 0.5, 1000);
ann.gradient_descent(0.01, 30000);
PLOG_MSG(ann.model_set_test(alg.transposenm(input_set))->to_string());
PLOG_MSG(ann.model_set_test(algn.transposenm(input_set))->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * ann.score()) + "%");
}
void MLPPTests::test_wgan_old(bool ui) {
//MLPPStat stat;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
//MLPPActivation avn;
//MLPPCost cost;
//MLPPData data;
@ -673,7 +686,7 @@ void MLPPTests::test_wgan_old(bool ui) {
}
void MLPPTests::test_wgan(bool ui) {
//MLPPStat stat;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
//MLPPActivation avn;
//MLPPCost cost;
//MLPPData data;
@ -700,7 +713,7 @@ void MLPPTests::test_wgan(bool ui) {
PLOG_MSG(str);
}
void MLPPTests::test_ann(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> inputSet = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // XOR
std::vector<real_t> outputSet = { 0, 1, 1, 0 };
@ -734,7 +747,7 @@ void MLPPTests::test_ann(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * ann.score()) + "%"); // Accuracy.
}
void MLPPTests::test_dynamically_sized_mann(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
// DYNAMICALLY SIZED MANN (Multidimensional Output ANN)
@ -762,7 +775,8 @@ void MLPPTests::test_dynamically_sized_mann(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * mann.score()) + "%");
}
void MLPPTests::test_train_test_split_mann(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
MLPPData data;
// TRAIN TEST SPLIT CHECK
@ -780,8 +794,8 @@ void MLPPTests::test_train_test_split_mann(bool ui) {
Ref<MLPPDataComplex> d;
d.instance();
d->set_input(alg.transposenm(input_set_1));
d->set_output(alg.transposenm(output_set_1));
d->set_input(algn.transposenm(input_set_1));
d->set_output(algn.transposenm(output_set_1));
MLPPData::SplitComplexData split_data = data.train_test_split(d, 0.2);
@ -806,7 +820,8 @@ void MLPPTests::test_train_test_split_mann(bool ui) {
}
void MLPPTests::test_naive_bayes() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
// NAIVE BAYES
std::vector<std::vector<real_t>> inputSet = { { 1, 1, 1, 1, 1 }, { 0, 0, 1, 1, 1 }, { 0, 0, 1, 0, 1 } };
@ -829,14 +844,14 @@ void MLPPTests::test_naive_bayes() {
MLPPBernoulliNBOld BNBOld(alg.transpose(inputSet), outputSet);
alg.printVector(BNBOld.modelSetTest(alg.transpose(inputSet)));
MLPPBernoulliNB BNB(alg.transposenm(input_set), output_set);
PLOG_MSG(BNB.model_set_test(alg.transposenm(input_set))->to_string());
MLPPBernoulliNB BNB(algn.transposenm(input_set), output_set);
PLOG_MSG(BNB.model_set_test(algn.transposenm(input_set))->to_string());
MLPPGaussianNBOld GNBOld(alg.transpose(inputSet), outputSet, 2);
alg.printVector(GNBOld.modelSetTest(alg.transpose(inputSet)));
MLPPGaussianNB GNB(alg.transposenm(input_set), output_set, 2);
PLOG_MSG(GNB.model_set_test(alg.transposenm(input_set))->to_string());
MLPPGaussianNB GNB(algn.transposenm(input_set), output_set, 2);
PLOG_MSG(GNB.model_set_test(algn.transposenm(input_set))->to_string());
}
void MLPPTests::test_k_means(bool ui) {
// KMeans
@ -858,7 +873,7 @@ void MLPPTests::test_k_means(bool ui) {
PLOG_MSG(kmeans->silhouette_scores()->to_string());
}
void MLPPTests::test_knn(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
// kNN
std::vector<std::vector<real_t>> inputSet = {
@ -897,9 +912,10 @@ void MLPPTests::test_knn(bool ui) {
}
void MLPPTests::test_convolution_tensors_etc() {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPLinAlg algn;
MLPPData data;
MLPPConvolutions conv;
MLPPConvolutionsOld conv;
// CONVOLUTION, POOLING, ETC..
std::vector<std::vector<real_t>> input = {
@ -924,7 +940,7 @@ void MLPPTests::test_convolution_tensors_etc() {
{ 109, 121, 127, 133, 139, 141, 140, 133 },
};
MLPPTransforms trans;
MLPPTransformsOld trans;
alg.printMatrix(trans.discreteCosineTransform(input2));
@ -940,12 +956,12 @@ void MLPPTests::test_convolution_tensors_etc() {
alg.printMatrix(conv.convolve_2d(conv.gaussian_filter_2d(5, 1), laplacian, 1));
}
void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
// PCA, SVD, eigenvalues & eigenvectors
std::vector<std::vector<real_t>> inputSet = { { 1, 1 }, { 1, 1 } };
MLPPLinAlg::EigenResultOld eigen = alg.eigen_old(inputSet);
MLPPLinAlgOld::EigenResultOld eigen = alg.eigen_old(inputSet);
std::cout << "Eigenvectors:" << std::endl;
alg.printMatrix(eigen.eigen_vectors);
@ -955,7 +971,7 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
std::cout << "SVD OLD START" << std::endl;
MLPPLinAlg::SVDResultOld svd_old = alg.SVD(inputSet);
MLPPLinAlgOld::SVDResultOld svd_old = alg.SVD(inputSet);
std::cout << "U:" << std::endl;
alg.printMatrix(svd_old.U);
@ -970,9 +986,10 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
input_set.instance();
input_set->set_from_std_vectors(inputSet);
/*
String str_svd = "SVD\n";
MLPPLinAlg::SVDResult svd = alg.svd(input_set);
MLPPLinAlgOld::SVDResult svd = alg.svd(input_set);
str_svd += "U:\n";
str_svd += svd.U->to_string();
@ -983,6 +1000,7 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
str_svd += "\n";
PLOG_MSG(str_svd);
*/
std::cout << "PCA" << std::endl;
@ -1003,7 +1021,7 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
}
void MLPPTests::test_nlp_and_data(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
// NLP/DATA
@ -1053,7 +1071,7 @@ void MLPPTests::test_nlp_and_data(bool ui) {
std::cout << std::endl;
}
void MLPPTests::test_outlier_finder(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
// Outlier Finder
//std::vector<real_t> inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332523523 };
@ -1109,13 +1127,13 @@ void MLPPTests::test_new_math_functions() {
alg.printMatrix(alg.gramSchmidtProcess(P));
//MLPPLinAlg::QRDResult qrd_result = alg.qrd(P); // It works!
//MLPPLinAlgOld::QRDResult qrd_result = alg.qrd(P); // It works!
//alg.printMatrix(qrd_result.Q);
//alg.printMatrix(qrd_result.R);
}
void MLPPTests::test_positive_definiteness_checker() {
//MLPPStat stat;
MLPPLinAlg alg;
MLPPLinAlgOld alg;
//MLPPActivation avn;
//MLPPCost cost;
//MLPPData data;
@ -1130,7 +1148,7 @@ void MLPPTests::test_positive_definiteness_checker() {
};
std::cout << std::boolalpha << alg.positiveDefiniteChecker(A) << std::endl;
MLPPLinAlg::CholeskyResult chres = alg.cholesky(A); // works.
MLPPLinAlgOld::CholeskyResult chres = alg.cholesky(A); // works.
alg.printMatrix(chres.L);
alg.printMatrix(chres.Lt);
}
@ -1200,8 +1218,8 @@ real_t f_mv(std::vector<real_t> x) {
*/
void MLPPTests::test_numerical_analysis() {
MLPPLinAlg alg;
MLPPConvolutions conv;
MLPPLinAlgOld alg;
MLPPConvolutionsOld conv;
// Checks for numerical analysis class.
MLPPNumericalAnalysisOld numAn;
@ -1273,7 +1291,7 @@ void MLPPTests::test_numerical_analysis() {
alg.printVector(alg.cross(a, b));
}
void MLPPTests::test_support_vector_classification_kernel(bool ui) {
MLPPLinAlg alg;
MLPPLinAlgOld alg;
MLPPData data;
//SUPPORT VECTOR CLASSIFICATION (kernel method)