MLPPTensor math api rework.

This commit is contained in:
Relintai 2023-04-25 14:06:12 +02:00
parent 81744cc460
commit 17b2f55f2d
2 changed files with 531 additions and 129 deletions

View File

@ -424,55 +424,516 @@ void MLPPTensor3::set_from_image(const Ref<Image> &p_img, const int p_channels)
img->unlock(); img->unlock();
} }
/* void MLPPTensor3::add(const Ref<MLPPTensor3> &B) {
Vector<Ref<MLPPMatrix>> MLPPTensor3::additionnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B) { ERR_FAIL_COND(!B.is_valid());
Vector<Ref<MLPPMatrix>> res; ERR_FAIL_COND(_size != B->size());
res.resize(A.size());
for (int i = 0; i < res.size(); i++) { const real_t *b_ptr = B->ptr();
res.write[i] = additionnm(A[i], B[i]); real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] += b_ptr[i];
}
}
Ref<MLPPTensor3> MLPPTensor3::addn(const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPTensor3>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPTensor3>());
Ref<MLPPTensor3> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = a_ptr[i] + b_ptr[i];
}
return C;
}
void MLPPTensor3::addb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size3i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) {
c_ptr[i] = a_ptr[i] + b_ptr[i];
}
}
void MLPPTensor3::sub(const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] -= b_ptr[i];
}
}
Ref<MLPPTensor3> MLPPTensor3::subn(const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPTensor3>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPTensor3>());
Ref<MLPPTensor3> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = a_ptr[i] - b_ptr[i];
}
return C;
}
void MLPPTensor3::subb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size3i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) {
c_ptr[i] = a_ptr[i] - b_ptr[i];
}
}
void MLPPTensor3::element_wise_division(const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
int ds = data_size();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] /= b_ptr[i];
}
}
Ref<MLPPTensor3> MLPPTensor3::element_wise_divisionn(const Ref<MLPPTensor3> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPTensor3>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPTensor3>());
int ds = data_size();
Ref<MLPPTensor3> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] / b_ptr[i];
}
return C;
}
void MLPPTensor3::element_wise_divisionb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size3i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (a_size != _size) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] / b_ptr[i];
}
}
void MLPPTensor3::sqrt() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sqrt(out_ptr[i]);
}
}
Ref<MLPPTensor3> MLPPTensor3::sqrtn() const {
Ref<MLPPTensor3> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
return out;
}
void MLPPTensor3::sqrtb(const Ref<MLPPTensor3> &A) {
ERR_FAIL_COND(!A.is_valid());
Size3i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
}
void MLPPTensor3::exponentiate(real_t p) {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::pow(out_ptr[i], p);
}
}
Ref<MLPPTensor3> MLPPTensor3::exponentiaten(real_t p) const {
Ref<MLPPTensor3> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
return out;
}
void MLPPTensor3::exponentiateb(const Ref<MLPPTensor3> &A, real_t p) {
ERR_FAIL_COND(!A.is_valid());
Size3i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
}
void MLPPTensor3::scalar_multiply(const real_t scalar) {
int ds = data_size();
for (int i = 0; i < ds; ++i) {
_data[i] *= scalar;
}
}
Ref<MLPPTensor3> MLPPTensor3::scalar_multiplyn(const real_t scalar) const {
Ref<MLPPTensor3> AN = duplicate();
int ds = AN->data_size();
real_t *an_ptr = AN->ptrw();
for (int i = 0; i < ds; ++i) {
an_ptr[i] *= scalar;
}
return AN;
}
void MLPPTensor3::scalar_multiplyb(const real_t scalar, const Ref<MLPPTensor3> &A) {
ERR_FAIL_COND(!A.is_valid());
if (A->size() != _size) {
resize(A->size());
}
int ds = data_size();
real_t *an_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
_data[i] = an_ptr[i] * scalar;
}
}
void MLPPTensor3::scalar_add(const real_t scalar) {
int ds = data_size();
for (int i = 0; i < ds; ++i) {
_data[i] += scalar;
}
}
Ref<MLPPTensor3> MLPPTensor3::scalar_addn(const real_t scalar) const {
Ref<MLPPTensor3> AN = duplicate();
int ds = AN->data_size();
real_t *an_ptr = AN->ptrw();
for (int i = 0; i < ds; ++i) {
an_ptr[i] += scalar;
}
return AN;
}
void MLPPTensor3::scalar_addb(const real_t scalar, const Ref<MLPPTensor3> &A) {
ERR_FAIL_COND(!A.is_valid());
if (A->size() != _size) {
resize(A->size());
}
int ds = data_size();
real_t *an_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
_data[i] = an_ptr[i] + scalar;
}
}
void MLPPTensor3::hadamard_product(const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
int ds = data_size();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = c_ptr[i] * b_ptr[i];
}
}
Ref<MLPPTensor3> MLPPTensor3::hadamard_productn(const Ref<MLPPTensor3> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPTensor3>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPTensor3>());
int ds = data_size();
Ref<MLPPTensor3> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] * b_ptr[i];
}
return C;
}
void MLPPTensor3::hadamard_productb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size3i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (a_size != _size) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] * b_ptr[i];
}
}
void MLPPTensor3::max(const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = MAX(c_ptr[i], b_ptr[i]);
}
}
Ref<MLPPTensor3> MLPPTensor3::maxn(const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPTensor3>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPTensor3>());
Ref<MLPPTensor3> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = MAX(a_ptr[i], b_ptr[i]);
}
return C;
}
void MLPPTensor3::maxb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size3i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) {
c_ptr[i] = MAX(a_ptr[i], b_ptr[i]);
}
}
void MLPPTensor3::abs() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = ABS(out_ptr[i]);
}
}
Ref<MLPPTensor3> MLPPTensor3::absn() const {
Ref<MLPPTensor3> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
return out;
}
void MLPPTensor3::absb(const Ref<MLPPTensor3> &A) {
ERR_FAIL_COND(!A.is_valid());
Size3i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
}
Ref<MLPPVector> MLPPTensor3::flatten() const {
int ds = data_size();
Ref<MLPPVector> res;
res.instance();
res->resize(ds);
real_t *res_ptr = res->ptrw();
const real_t *a_ptr = ptr();
for (int i = 0; i < ds; ++i) {
res_ptr[i] = a_ptr[i];
} }
return res; return res;
} }
*/ void MLPPTensor3::flatteno(Ref<MLPPVector> out) const {
/* ERR_FAIL_COND(!out.is_valid());
Vector<Ref<MLPPMatrix>> MLPPTensor3::element_wise_divisionnvnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B) {
Vector<Ref<MLPPMatrix>> res;
res.resize(A.size());
for (int i = 0; i < A.size(); i++) { int ds = data_size();
res.write[i] = element_wise_divisionnvnm(A[i], B[i]);
if (unlikely(out->size() != ds)) {
out->resize(ds);
} }
return res; real_t *res_ptr = out->ptrw();
} const real_t *a_ptr = ptr();
*/
/*
Vector<Ref<MLPPMatrix>> MLPPTensor3::sqrtnvt(const Vector<Ref<MLPPMatrix>> &A) {
Vector<Ref<MLPPMatrix>> res;
res.resize(A.size());
for (int i = 0; i < A.size(); i++) { for (int i = 0; i < ds; ++i) {
res.write[i] = sqrtnm(A[i]); res_ptr[i] = a_ptr[i];
} }
return res;
} }
*/
/* /*
Vector<Ref<MLPPMatrix>> MLPPTensor3::exponentiatenvt(const Vector<Ref<MLPPMatrix>> &A, real_t p) { real_t MLPPTensor3::norm_2(std::vector<std::vector<std::vector<real_t>>> A) {
Vector<Ref<MLPPMatrix>> res; real_t sum = 0;
res.resize(A.size()); for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
for (int i = 0; i < A.size(); i++) { for (uint32_t k = 0; k < A[i][j].size(); k++) {
res.write[i] = exponentiatenm(A[i], p); sum += A[i][j][k] * A[i][j][k];
}
}
} }
return Math::sqrt(sum);
return res;
} }
*/ */
/* /*
std::vector<std::vector<real_t>> MLPPTensor3::tensor_vec_mult(std::vector<std::vector<std::vector<real_t>>> A, std::vector<real_t> b) { std::vector<std::vector<real_t>> MLPPTensor3::tensor_vec_mult(std::vector<std::vector<std::vector<real_t>>> A, std::vector<real_t> b) {
std::vector<std::vector<real_t>> C; std::vector<std::vector<real_t>> C;
@ -489,87 +950,6 @@ std::vector<std::vector<real_t>> MLPPTensor3::tensor_vec_mult(std::vector<std::v
} }
*/ */
/*
std::vector<real_t> MLPPTensor3::flatten(std::vector<std::vector<std::vector<real_t>>> A) {
std::vector<real_t> c;
for (uint32_t i = 0; i < A.size(); i++) {
std::vector<real_t> flattenedVec = flatten(A[i]);
c.insert(c.end(), flattenedVec.begin(), flattenedVec.end());
}
return c;
}
*/
/*
Vector<Ref<MLPPMatrix>> MLPPTensor3::scalar_multiplynvt(real_t scalar, Vector<Ref<MLPPMatrix>> A) {
for (int i = 0; i < A.size(); i++) {
A.write[i] = scalar_multiplynm(scalar, A[i]);
}
return A;
}
Vector<Ref<MLPPMatrix>> MLPPTensor3::scalar_addnvt(real_t scalar, Vector<Ref<MLPPMatrix>> A) {
for (int i = 0; i < A.size(); i++) {
A.write[i] = scalar_addnm(scalar, A[i]);
}
return A;
}
Vector<Ref<MLPPMatrix>> MLPPTensor3::resizenvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B) {
Vector<Ref<MLPPMatrix>> res;
res.resize(B.size());
for (int i = 0; i < res.size(); i++) {
Ref<MLPPMatrix> m;
m.instance();
m->resize(B[i]->size());
res.write[i] = m;
}
return res;
}
*/
//std::vector<std::vector<std::vector<real_t>>> hadamard_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
/*
Vector<Ref<MLPPMatrix>> MLPPTensor3::maxnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B) {
Vector<Ref<MLPPMatrix>> res;
res.resize(A.size());
for (int i = 0; i < A.size(); i++) {
res.write[i] = maxnm(A[i], B[i]);
}
return res;
}
Vector<Ref<MLPPMatrix>> MLPPTensor3::absnvt(const Vector<Ref<MLPPMatrix>> &A) {
Vector<Ref<MLPPMatrix>> res;
res.resize(A.size());
for (int i = 0; i < A.size(); i++) {
res.write[i] = absnm(A[i]);
}
return A;
}
*/
/*
real_t MLPPTensor3::norm_2(std::vector<std::vector<std::vector<real_t>>> A) {
real_t sum = 0;
for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
for (uint32_t k = 0; k < A[i][j].size(); k++) {
sum += A[i][j][k] * A[i][j][k];
}
}
}
return Math::sqrt(sum);
}
*/
/* /*
// Bad implementation. Change this later. // Bad implementation. Change this later.
std::vector<std::vector<std::vector<real_t>>> MLPPTensor3::vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B) { std::vector<std::vector<std::vector<real_t>>> MLPPTensor3::vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B) {

View File

@ -30,7 +30,7 @@ public:
} }
// TODO: Need to double check whether it's right to call the z axis feature map (probably not) // TODO: Need to double check whether it's right to call the z axis feature map (probably not)
// TODO: Add helper methods for the other axes aswell (probably shouldn't have as extensive of a coverage as z), // TODO: Add helper methods for the other axes aswell (probably shouldn't have as extensive of a coverage as z),
// Only MLPPMatrix: get, add, set. // Only MLPPMatrix: get, add, set.
// TODO: Add Image get, set helper methods to MLPPMatrix -> so the other axis helper methods can use them. // TODO: Add Image get, set helper methods to MLPPMatrix -> so the other axis helper methods can use them.
// TODO: _FORCE_INLINE_ less big methods (Also do this in MLPPVEctor and MLPPMatrix) // TODO: _FORCE_INLINE_ less big methods (Also do this in MLPPVEctor and MLPPMatrix)
@ -657,30 +657,52 @@ public:
public: public:
//math api //math api
//Vector<Ref<MLPPMatrix>> additionnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B); void add(const Ref<MLPPTensor3> &B);
Ref<MLPPTensor3> addn(const Ref<MLPPTensor3> &B);
void addb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B);
//Vector<Ref<MLPPMatrix>> element_wise_divisionnvnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B); void sub(const Ref<MLPPTensor3> &B);
Ref<MLPPTensor3> subn(const Ref<MLPPTensor3> &B);
void subb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B);
//Vector<Ref<MLPPMatrix>> sqrtnvt(const Vector<Ref<MLPPMatrix>> &A); void element_wise_division(const Ref<MLPPTensor3> &B);
Ref<MLPPTensor3> element_wise_divisionn(const Ref<MLPPTensor3> &B) const;
//Vector<Ref<MLPPMatrix>> exponentiatenvt(const Vector<Ref<MLPPMatrix>> &A, real_t p); void element_wise_divisionb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B);
//std::vector<std::vector<real_t>> tensor_vec_mult(std::vector<std::vector<std::vector<real_t>>> A, std::vector<real_t> b); void sqrt();
Ref<MLPPTensor3> sqrtn() const;
void sqrtb(const Ref<MLPPTensor3> &A);
//std::vector<real_t> flatten(std::vector<std::vector<std::vector<real_t>>> A); void exponentiate(real_t p);
Ref<MLPPTensor3> exponentiaten(real_t p) const;
void exponentiateb(const Ref<MLPPTensor3> &A, real_t p);
//Vector<Ref<MLPPMatrix>> scalar_multiplynvt(real_t scalar, Vector<Ref<MLPPMatrix>> A); void scalar_multiply(const real_t scalar);
//Vector<Ref<MLPPMatrix>> scalar_addnvt(real_t scalar, Vector<Ref<MLPPMatrix>> A); Ref<MLPPTensor3> scalar_multiplyn(const real_t scalar) const;
void scalar_multiplyb(const real_t scalar, const Ref<MLPPTensor3> &A);
//Vector<Ref<MLPPMatrix>> resizenvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B); void scalar_add(const real_t scalar);
Ref<MLPPTensor3> scalar_addn(const real_t scalar) const;
void scalar_addb(const real_t scalar, const Ref<MLPPTensor3> &A);
//std::vector<std::vector<std::vector<real_t>>> hadamard_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B); void hadamard_product(const Ref<MLPPTensor3> &B);
Ref<MLPPTensor3> hadamard_productn(const Ref<MLPPTensor3> &B) const;
void hadamard_productb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B);
//Vector<Ref<MLPPMatrix>> maxnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B); void max(const Ref<MLPPTensor3> &B);
//Vector<Ref<MLPPMatrix>> absnvt(const Vector<Ref<MLPPMatrix>> &A); Ref<MLPPTensor3> maxn(const Ref<MLPPTensor3> &B);
void maxb(const Ref<MLPPTensor3> &A, const Ref<MLPPTensor3> &B);
void abs();
Ref<MLPPTensor3> absn() const;
void absb(const Ref<MLPPTensor3> &A);
Ref<MLPPVector> flatten() const;
void flatteno(Ref<MLPPVector> out) const;
//real_t norm_2(std::vector<std::vector<std::vector<real_t>>> A); //real_t norm_2(std::vector<std::vector<std::vector<real_t>>> A);
//std::vector<std::vector<real_t>> tensor_vec_mult(std::vector<std::vector<std::vector<real_t>>> A, std::vector<real_t> b);
//std::vector<std::vector<std::vector<real_t>>> vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B); //std::vector<std::vector<std::vector<real_t>>> vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B);
public: public: