MLPPSoftmaxNet rework.

This commit is contained in:
Relintai 2023-04-29 12:20:48 +02:00
parent cd1f5a2805
commit 149bf14094
3 changed files with 234 additions and 85 deletions

View File

@ -16,62 +16,115 @@
#include <random>
/*
Ref<MLPPMatrix> MLPPSoftmaxNet::get_input_set() {
Ref<MLPPMatrix> MLPPSoftmaxNet::get_input_set() const {
return _input_set;
}
void MLPPSoftmaxNet::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPSoftmaxNet::get_output_set() {
Ref<MLPPMatrix> MLPPSoftmaxNet::get_output_set() const {
return _output_set;
}
void MLPPSoftmaxNet::set_output_set(const Ref<MLPPMatrix> &val) {
_output_set = val;
_initialized = false;
}
MLPPReg::RegularizationType MLPPSoftmaxNet::get_reg() {
int MLPPSoftmaxNet::get_n_hidden() const {
return _n_hidden;
}
void MLPPSoftmaxNet::set_n_hidden(const int val) {
_n_hidden = val;
}
MLPPReg::RegularizationType MLPPSoftmaxNet::get_reg() const {
return _reg;
}
void MLPPSoftmaxNet::set_reg(const MLPPReg::RegularizationType val) {
_reg = val;
_initialized = false;
}
real_t MLPPSoftmaxNet::get_lambda() {
real_t MLPPSoftmaxNet::get_lambda() const {
return _lambda;
}
void MLPPSoftmaxNet::set_lambda(const real_t val) {
_lambda = val;
_initialized = false;
}
real_t MLPPSoftmaxNet::get_alpha() {
real_t MLPPSoftmaxNet::get_alpha() const {
return _alpha;
}
void MLPPSoftmaxNet::set_alpha(const real_t val) {
_alpha = val;
_initialized = false;
}
*/
Ref<MLPPMatrix> MLPPSoftmaxNet::data_y_hat_get() const {
return _y_hat;
}
void MLPPSoftmaxNet::data_y_hat_set(const Ref<MLPPMatrix> &val) {
_y_hat = val;
}
Ref<MLPPMatrix> MLPPSoftmaxNet::data_weights1_get() const {
return _weights1;
}
void MLPPSoftmaxNet::data_weights1_set(const Ref<MLPPMatrix> &val) {
_weights1 = val;
}
Ref<MLPPMatrix> MLPPSoftmaxNet::data_weights2_get() const {
return _weights2;
}
void MLPPSoftmaxNet::data_weights2_set(const Ref<MLPPMatrix> &val) {
_weights2 = val;
}
Ref<MLPPVector> MLPPSoftmaxNet::data_bias1_get() const {
return _bias1;
}
void MLPPSoftmaxNet::data_bias1_set(const Ref<MLPPVector> &val) {
_bias1 = val;
}
Ref<MLPPVector> MLPPSoftmaxNet::data_bias2_get() const {
return _bias2;
}
void MLPPSoftmaxNet::data_bias2_set(const Ref<MLPPVector> &val) {
_bias2 = val;
}
Ref<MLPPMatrix> MLPPSoftmaxNet::data_z2_get() const {
return _z2;
}
void MLPPSoftmaxNet::data_z2_set(const Ref<MLPPMatrix> &val) {
_z2 = val;
}
Ref<MLPPMatrix> MLPPSoftmaxNet::data_a2_get() const {
return _a2;
}
void MLPPSoftmaxNet::data_a2_set(const Ref<MLPPMatrix> &val) {
_a2 = val;
}
Ref<MLPPVector> MLPPSoftmaxNet::model_test(const Ref<MLPPVector> &x) {
ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(needs_init(), Ref<MLPPVector>());
return evaluatev(x);
}
Ref<MLPPMatrix> MLPPSoftmaxNet::model_set_test(const Ref<MLPPMatrix> &X) {
ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(needs_init(), Ref<MLPPVector>());
return evaluatem(X);
}
void MLPPSoftmaxNet::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
void MLPPSoftmaxNet::train_gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
ERR_FAIL_COND(needs_init());
MLPPActivation avn;
MLPPReg regularization;
@ -125,16 +178,21 @@ void MLPPSoftmaxNet::gradient_descent(real_t learning_rate, int max_epoch, bool
}
}
void MLPPSoftmaxNet::sgd(real_t learning_rate, int max_epoch, bool ui) {
void MLPPSoftmaxNet::train_sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
ERR_FAIL_COND(needs_init());
MLPPActivation avn;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
int n = _input_set->size().y;
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
std::uniform_int_distribution<int> distribution(0, int(n - 1));
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
@ -209,14 +267,19 @@ void MLPPSoftmaxNet::sgd(real_t learning_rate, int max_epoch, bool ui) {
forward_pass();
}
void MLPPSoftmaxNet::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
void MLPPSoftmaxNet::train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
ERR_FAIL_COND(needs_init());
MLPPActivation avn;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
int n = _input_set->size().y;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
int n_mini_batch = n / mini_batch_size;
MLPPUtilities::CreateMiniBatchMMBatch batches = MLPPUtilities::create_mini_batchesmm(_input_set, _output_set, n_mini_batch);
@ -278,72 +341,117 @@ void MLPPSoftmaxNet::mbgd(real_t learning_rate, int max_epoch, int mini_batch_si
}
real_t MLPPSoftmaxNet::score() {
ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), 0);
ERR_FAIL_COND_V(needs_init(), 0);
MLPPUtilities util;
return util.performance_mat(_y_hat, _output_set);
}
void MLPPSoftmaxNet::save(const String &file_name) {
MLPPUtilities util;
//util.saveParameters(fileName, _weights1, _bias1, false, 1);
//util.saveParameters(fileName, _weights2, _bias2, true, 2);
}
Ref<MLPPMatrix> MLPPSoftmaxNet::get_embeddings() {
return _weights1;
}
bool MLPPSoftmaxNet::is_initialized() {
return _initialized;
}
void MLPPSoftmaxNet::initialize() {
if (_initialized) {
return;
bool MLPPSoftmaxNet::needs_init() const {
if (!_input_set.is_valid()) {
return true;
}
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
if (!_output_set.is_valid()) {
return true;
}
_initialized = true;
int n = _input_set->size().y;
int k = _input_set->size().x;
int n_class = _output_set->size().x;
if (_y_hat->size().y != n) {
return true;
}
if (_weights1->size() != Size2i(_n_hidden, k)) {
return true;
}
if (_weights2->size() != Size2i(n_class, _n_hidden)) {
return true;
}
if (_bias1->size() != _n_hidden) {
return true;
}
if (_bias2->size() != n_class) {
return true;
}
return false;
}
void MLPPSoftmaxNet::initialize() {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
ERR_FAIL_COND(needs_init());
int n = _input_set->size().y;
int k = _input_set->size().x;
int n_class = _output_set->size().x;
_y_hat->resize(Size2i(0, n));
MLPPUtilities utils;
_weights1->resize(Size2i(_n_hidden, k));
utils.weight_initializationm(_weights1);
_weights2->resize(Size2i(n_class, _n_hidden));
utils.weight_initializationm(_weights2);
_bias1->resize(_n_hidden);
utils.bias_initializationv(_bias1);
_bias2->resize(n_class);
utils.bias_initializationv(_bias2);
}
MLPPSoftmaxNet::MLPPSoftmaxNet(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = p_input_set->size().y;
_k = p_input_set->size().x;
_n_hidden = p_n_hidden;
_n_class = p_output_set->size().x;
_reg = p_reg;
_lambda = p_lambda;
_alpha = p_alpha;
_y_hat.instance();
_y_hat->resize(Size2i(0, _n));
MLPPUtilities utils;
_weights1.instance();
_weights1->resize(Size2i(_n_hidden, _k));
utils.weight_initializationm(_weights1);
_weights2.instance();
_weights2->resize(Size2i(_n_class, _n_hidden));
utils.weight_initializationm(_weights2);
_bias1.instance();
_bias1->resize(_n_hidden);
utils.bias_initializationv(_bias1);
_bias2.instance();
_bias2->resize(_n_class);
utils.bias_initializationv(_bias2);
_initialized = true;
_z2.instance();
_a2.instance();
initialize();
}
MLPPSoftmaxNet::MLPPSoftmaxNet() {
_initialized = false;
_n_hidden = 0;
_reg = MLPPReg::REGULARIZATION_TYPE_NONE;
_lambda = 0;
_alpha = 0;
_y_hat.instance();
_weights1.instance();
_weights2.instance();
_bias1.instance();
_bias2.instance();
_z2.instance();
_a2.instance();
}
MLPPSoftmaxNet::~MLPPSoftmaxNet() {
}
@ -406,7 +514,6 @@ void MLPPSoftmaxNet::forward_pass() {
}
void MLPPSoftmaxNet::_bind_methods() {
/*
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPSoftmaxNet::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPSoftmaxNet::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
@ -427,18 +534,46 @@ void MLPPSoftmaxNet::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPSoftmaxNet::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ADD_GROUP("Data", "data");
ClassDB::bind_method(D_METHOD("data_y_hat_get"), &MLPPSoftmaxNet::data_y_hat_get);
ClassDB::bind_method(D_METHOD("data_y_hat_set", "val"), &MLPPSoftmaxNet::data_y_hat_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_y_hat", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "data_y_hat_set", "data_y_hat_get");
ClassDB::bind_method(D_METHOD("data_weights1_get"), &MLPPSoftmaxNet::data_weights1_get);
ClassDB::bind_method(D_METHOD("data_weights1_set", "val"), &MLPPSoftmaxNet::data_weights1_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights1", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "data_weights1_set", "data_weights1_get");
ClassDB::bind_method(D_METHOD("data_weights2_get"), &MLPPSoftmaxNet::data_weights2_get);
ClassDB::bind_method(D_METHOD("data_weights2_set", "val"), &MLPPSoftmaxNet::data_weights2_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights2", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "data_weights2_set", "data_weights2_get");
ClassDB::bind_method(D_METHOD("data_bias1_get"), &MLPPSoftmaxNet::data_bias1_get);
ClassDB::bind_method(D_METHOD("data_bias1_set", "val"), &MLPPSoftmaxNet::data_bias1_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_bias1", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_bias1_set", "data_bias1_get");
ClassDB::bind_method(D_METHOD("data_bias2_get"), &MLPPSoftmaxNet::data_bias2_get);
ClassDB::bind_method(D_METHOD("data_bias2_set", "val"), &MLPPSoftmaxNet::data_bias2_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_bias2", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_bias2_set", "data_bias2_get");
ClassDB::bind_method(D_METHOD("data_z2_get"), &MLPPSoftmaxNet::data_z2_get);
ClassDB::bind_method(D_METHOD("data_z2_set", "val"), &MLPPSoftmaxNet::data_z2_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_z2", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "data_z2_set", "data_z2_get");
ClassDB::bind_method(D_METHOD("data_a2_get"), &MLPPSoftmaxNet::data_a2_get);
ClassDB::bind_method(D_METHOD("data_a2_set", "val"), &MLPPSoftmaxNet::data_a2_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_a2", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "data_a2_set", "data_a2_get");
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPSoftmaxNet::model_test);
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPSoftmaxNet::model_set_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::gradient_descent, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::sgd, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPSoftmaxNet::mbgd, false);
ClassDB::bind_method(D_METHOD("train_gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::train_gradient_descent, false);
ClassDB::bind_method(D_METHOD("train_sgd", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::train_sgd, false);
ClassDB::bind_method(D_METHOD("train_mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPSoftmaxNet::train_mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPSoftmaxNet::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPSoftmaxNet::save);
ClassDB::bind_method(D_METHOD("get_embeddings"), &MLPPSoftmaxNet::get_embeddings);
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPSoftmaxNet::is_initialized);
ClassDB::bind_method(D_METHOD("needs_init"), &MLPPSoftmaxNet::needs_init);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPSoftmaxNet::initialize);
*/
}

View File

@ -9,48 +9,68 @@
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "core/object/resource.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPSoftmaxNet : public Reference {
GDCLASS(MLPPSoftmaxNet, Reference);
class MLPPSoftmaxNet : public Resource {
GDCLASS(MLPPSoftmaxNet, Resource);
public:
/*
Ref<MLPPMatrix> get_input_set();
Ref<MLPPMatrix> get_input_set() const;
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_output_set();
Ref<MLPPMatrix> get_output_set() const;
void set_output_set(const Ref<MLPPMatrix> &val);
MLPPReg::RegularizationType get_reg();
int get_n_hidden() const;
void set_n_hidden(const int val);
MLPPReg::RegularizationType get_reg() const;
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda();
real_t get_lambda() const;
void set_lambda(const real_t val);
real_t get_alpha();
real_t get_alpha() const;
void set_alpha(const real_t val);
*/
Ref<MLPPMatrix> data_y_hat_get() const;
void data_y_hat_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> data_weights1_get() const;
void data_weights1_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> data_weights2_get() const;
void data_weights2_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> data_bias1_get() const;
void data_bias1_set(const Ref<MLPPVector> &val);
Ref<MLPPVector> data_bias2_get() const;
void data_bias2_set(const Ref<MLPPVector> &val);
Ref<MLPPMatrix> data_z2_get() const;
void data_z2_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> data_a2_get() const;
void data_a2_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> model_test(const Ref<MLPPVector> &x);
Ref<MLPPMatrix> model_set_test(const Ref<MLPPMatrix> &X);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
void train_gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void train_sgd(real_t learning_rate, int max_epoch, bool ui = false);
void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
void save(const String &file_name);
Ref<MLPPMatrix> get_embeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings.
bool is_initialized();
bool needs_init() const;
void initialize();
MLPPSoftmaxNet(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
@ -101,12 +121,6 @@ protected:
Ref<MLPPMatrix> _z2;
Ref<MLPPMatrix> _a2;
int _n;
int _k;
int _n_class;
bool _initialized;
};
#endif /* SoftmaxNet_hpp */

View File

@ -415,7 +415,7 @@ void MLPPTests::test_soft_max_network(bool ui) {
Ref<MLPPDataComplex> dt = data.load_wine(_wine_data_path);
MLPPSoftmaxNet model(dt->get_input(), dt->get_output(), 1);
model.gradient_descent(0.01, 100000, ui);
model.train_gradient_descent(0.01, 100000, ui);
PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
}