Prefix Cost with MLPP.

This commit is contained in:
Relintai 2023-01-24 19:37:08 +01:00
parent 1381b5f70e
commit 0e9d8bcb41
25 changed files with 146 additions and 146 deletions

View File

@ -123,9 +123,9 @@ int main() {
Stat stat; Stat stat;
LinAlg alg; LinAlg alg;
MLPPActivation avn; MLPPActivation avn;
Cost cost; MLPPCost cost;
Data data; Data data;
Convolutions conv; MLPPConvolutions conv;
// DATA SETS // DATA SETS
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; // std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};

View File

@ -54,7 +54,7 @@ double MLPPANN::modelTest(std::vector<double> x) {
} }
void MLPPANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { void MLPPANN::gradientDescent(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
int epoch = 1; int epoch = 1;
@ -88,7 +88,7 @@ void MLPPANN::gradientDescent(double learning_rate, int max_epoch, bool UI) {
} }
void MLPPANN::SGD(double learning_rate, int max_epoch, bool UI) { void MLPPANN::SGD(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -126,7 +126,7 @@ void MLPPANN::SGD(double learning_rate, int max_epoch, bool UI) {
} }
void MLPPANN::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { void MLPPANN::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -164,7 +164,7 @@ void MLPPANN::MBGD(double learning_rate, int max_epoch, int mini_batch_size, boo
} }
void MLPPANN::Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI) { void MLPPANN::Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -221,7 +221,7 @@ void MLPPANN::Momentum(double learning_rate, int max_epoch, int mini_batch_size,
} }
void MLPPANN::Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI) { void MLPPANN::Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -277,7 +277,7 @@ void MLPPANN::Adagrad(double learning_rate, int max_epoch, int mini_batch_size,
} }
void MLPPANN::Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI) { void MLPPANN::Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -333,7 +333,7 @@ void MLPPANN::Adadelta(double learning_rate, int max_epoch, int mini_batch_size,
} }
void MLPPANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { void MLPPANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -400,7 +400,7 @@ void MLPPANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, dou
} }
void MLPPANN::Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { void MLPPANN::Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -465,7 +465,7 @@ void MLPPANN::Adamax(double learning_rate, int max_epoch, int mini_batch_size, d
} }
void MLPPANN::Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { void MLPPANN::Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -535,7 +535,7 @@ void MLPPANN::Nadam(double learning_rate, int max_epoch, int mini_batch_size, do
} }
void MLPPANN::AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { void MLPPANN::AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
@ -671,7 +671,7 @@ void MLPPANN::addOutputLayer(std::string activation, std::string loss, std::stri
double MLPPANN::Cost(std::vector<double> y_hat, std::vector<double> y) { double MLPPANN::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
double totalRegTerm = 0; double totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost]; auto cost_function = outputLayer->cost_map[outputLayer->cost];
@ -719,7 +719,7 @@ void MLPPANN::updateParameters(std::vector<std::vector<std::vector<double>>> hid
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> MLPPANN::computeGradients(std::vector<double> y_hat, std::vector<double> outputSet) { std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> MLPPANN::computeGradients(std::vector<double> y_hat, std::vector<double> outputSet) {
// std::cout << "BEGIN" << std::endl; // std::cout << "BEGIN" << std::endl;
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;

View File

@ -208,7 +208,7 @@ void MLPPAutoEncoder::save(std::string fileName) {
} }
double MLPPAutoEncoder::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPAutoEncoder::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
class Cost cost; class MLPPCost cost;
return cost.MSE(y_hat, inputSet); return cost.MSE(y_hat, inputSet);
} }

View File

@ -186,7 +186,7 @@ double MLPPCLogLogReg::score() {
double MLPPCLogLogReg::Cost(std::vector<double> y_hat, std::vector<double> y) { double MLPPCLogLogReg::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
} }

View File

@ -10,11 +10,11 @@
#include <cmath> #include <cmath>
#include <iostream> #include <iostream>
Convolutions::Convolutions() : MLPPConvolutions::MLPPConvolutions() :
prewittHorizontal({ { 1, 1, 1 }, { 0, 0, 0 }, { -1, -1, -1 } }), prewittVertical({ { 1, 0, -1 }, { 1, 0, -1 }, { 1, 0, -1 } }), sobelHorizontal({ { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } }), sobelVertical({ { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } }), scharrHorizontal({ { 3, 10, 3 }, { 0, 0, 0 }, { -3, -10, -3 } }), scharrVertical({ { 3, 0, -3 }, { 10, 0, -10 }, { 3, 0, -3 } }), robertsHorizontal({ { 0, 1 }, { -1, 0 } }), robertsVertical({ { 1, 0 }, { 0, -1 } }) { prewittHorizontal({ { 1, 1, 1 }, { 0, 0, 0 }, { -1, -1, -1 } }), prewittVertical({ { 1, 0, -1 }, { 1, 0, -1 }, { 1, 0, -1 } }), sobelHorizontal({ { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } }), sobelVertical({ { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } }), scharrHorizontal({ { 3, 10, 3 }, { 0, 0, 0 }, { -3, -10, -3 } }), scharrVertical({ { 3, 0, -3 }, { 10, 0, -10 }, { 3, 0, -3 } }), robertsHorizontal({ { 0, 1 }, { -1, 0 } }), robertsVertical({ { 1, 0 }, { 0, -1 } }) {
} }
std::vector<std::vector<double>> Convolutions::convolve(std::vector<std::vector<double>> input, std::vector<std::vector<double>> filter, int S, int P) { std::vector<std::vector<double>> MLPPConvolutions::convolve(std::vector<std::vector<double>> input, std::vector<std::vector<double>> filter, int S, int P) {
LinAlg alg; LinAlg alg;
std::vector<std::vector<double>> featureMap; std::vector<std::vector<double>> featureMap;
int N = input.size(); int N = input.size();
@ -70,7 +70,7 @@ std::vector<std::vector<double>> Convolutions::convolve(std::vector<std::vector<
return featureMap; return featureMap;
} }
std::vector<std::vector<std::vector<double>>> Convolutions::convolve(std::vector<std::vector<std::vector<double>>> input, std::vector<std::vector<std::vector<double>>> filter, int S, int P) { std::vector<std::vector<std::vector<double>>> MLPPConvolutions::convolve(std::vector<std::vector<std::vector<double>>> input, std::vector<std::vector<std::vector<double>>> filter, int S, int P) {
LinAlg alg; LinAlg alg;
std::vector<std::vector<std::vector<double>>> featureMap; std::vector<std::vector<std::vector<double>>> featureMap;
int N = input[0].size(); int N = input[0].size();
@ -136,7 +136,7 @@ std::vector<std::vector<std::vector<double>>> Convolutions::convolve(std::vector
return featureMap; return featureMap;
} }
std::vector<std::vector<double>> Convolutions::pool(std::vector<std::vector<double>> input, int F, int S, std::string type) { std::vector<std::vector<double>> MLPPConvolutions::pool(std::vector<std::vector<double>> input, int F, int S, std::string type) {
LinAlg alg; LinAlg alg;
std::vector<std::vector<double>> pooledMap; std::vector<std::vector<double>> pooledMap;
int N = input.size(); int N = input.size();
@ -176,7 +176,7 @@ std::vector<std::vector<double>> Convolutions::pool(std::vector<std::vector<doub
return pooledMap; return pooledMap;
} }
std::vector<std::vector<std::vector<double>>> Convolutions::pool(std::vector<std::vector<std::vector<double>>> input, int F, int S, std::string type) { std::vector<std::vector<std::vector<double>>> MLPPConvolutions::pool(std::vector<std::vector<std::vector<double>>> input, int F, int S, std::string type) {
std::vector<std::vector<std::vector<double>>> pooledMap; std::vector<std::vector<std::vector<double>>> pooledMap;
for (int i = 0; i < input.size(); i++) { for (int i = 0; i < input.size(); i++) {
pooledMap.push_back(pool(input[i], F, S, type)); pooledMap.push_back(pool(input[i], F, S, type));
@ -184,7 +184,7 @@ std::vector<std::vector<std::vector<double>>> Convolutions::pool(std::vector<std
return pooledMap; return pooledMap;
} }
double Convolutions::globalPool(std::vector<std::vector<double>> input, std::string type) { double MLPPConvolutions::globalPool(std::vector<std::vector<double>> input, std::string type) {
LinAlg alg; LinAlg alg;
if (type == "Average") { if (type == "Average") {
Stat stat; Stat stat;
@ -196,7 +196,7 @@ double Convolutions::globalPool(std::vector<std::vector<double>> input, std::str
} }
} }
std::vector<double> Convolutions::globalPool(std::vector<std::vector<std::vector<double>>> input, std::string type) { std::vector<double> MLPPConvolutions::globalPool(std::vector<std::vector<std::vector<double>>> input, std::string type) {
std::vector<double> pooledMap; std::vector<double> pooledMap;
for (int i = 0; i < input.size(); i++) { for (int i = 0; i < input.size(); i++) {
pooledMap.push_back(globalPool(input[i], type)); pooledMap.push_back(globalPool(input[i], type));
@ -204,12 +204,12 @@ std::vector<double> Convolutions::globalPool(std::vector<std::vector<std::vector
return pooledMap; return pooledMap;
} }
double Convolutions::gaussian2D(double x, double y, double std) { double MLPPConvolutions::gaussian2D(double x, double y, double std) {
double std_sq = std * std; double std_sq = std * std;
return 1 / (2 * M_PI * std_sq) * std::exp(-(x * x + y * y) / 2 * std_sq); return 1 / (2 * M_PI * std_sq) * std::exp(-(x * x + y * y) / 2 * std_sq);
} }
std::vector<std::vector<double>> Convolutions::gaussianFilter2D(int size, double std) { std::vector<std::vector<double>> MLPPConvolutions::gaussianFilter2D(int size, double std) {
std::vector<std::vector<double>> filter; std::vector<std::vector<double>> filter;
filter.resize(size); filter.resize(size);
for (int i = 0; i < filter.size(); i++) { for (int i = 0; i < filter.size(); i++) {
@ -229,7 +229,7 @@ been easier to carry out the calculation explicitly, mainly because it is more i
and also because my convolution algorithm is only built for filters with equally sized and also because my convolution algorithm is only built for filters with equally sized
heights and widths. heights and widths.
*/ */
std::vector<std::vector<double>> Convolutions::dx(std::vector<std::vector<double>> input) { std::vector<std::vector<double>> MLPPConvolutions::dx(std::vector<std::vector<double>> input) {
std::vector<std::vector<double>> deriv; // We assume a gray scale image. std::vector<std::vector<double>> deriv; // We assume a gray scale image.
deriv.resize(input.size()); deriv.resize(input.size());
for (int i = 0; i < deriv.size(); i++) { for (int i = 0; i < deriv.size(); i++) {
@ -250,7 +250,7 @@ std::vector<std::vector<double>> Convolutions::dx(std::vector<std::vector<double
return deriv; return deriv;
} }
std::vector<std::vector<double>> Convolutions::dy(std::vector<std::vector<double>> input) { std::vector<std::vector<double>> MLPPConvolutions::dy(std::vector<std::vector<double>> input) {
std::vector<std::vector<double>> deriv; std::vector<std::vector<double>> deriv;
deriv.resize(input.size()); deriv.resize(input.size());
for (int i = 0; i < deriv.size(); i++) { for (int i = 0; i < deriv.size(); i++) {
@ -271,14 +271,14 @@ std::vector<std::vector<double>> Convolutions::dy(std::vector<std::vector<double
return deriv; return deriv;
} }
std::vector<std::vector<double>> Convolutions::gradMagnitude(std::vector<std::vector<double>> input) { std::vector<std::vector<double>> MLPPConvolutions::gradMagnitude(std::vector<std::vector<double>> input) {
LinAlg alg; LinAlg alg;
std::vector<std::vector<double>> xDeriv_2 = alg.hadamard_product(dx(input), dx(input)); std::vector<std::vector<double>> xDeriv_2 = alg.hadamard_product(dx(input), dx(input));
std::vector<std::vector<double>> yDeriv_2 = alg.hadamard_product(dy(input), dy(input)); std::vector<std::vector<double>> yDeriv_2 = alg.hadamard_product(dy(input), dy(input));
return alg.sqrt(alg.addition(xDeriv_2, yDeriv_2)); return alg.sqrt(alg.addition(xDeriv_2, yDeriv_2));
} }
std::vector<std::vector<double>> Convolutions::gradOrientation(std::vector<std::vector<double>> input) { std::vector<std::vector<double>> MLPPConvolutions::gradOrientation(std::vector<std::vector<double>> input) {
std::vector<std::vector<double>> deriv; std::vector<std::vector<double>> deriv;
deriv.resize(input.size()); deriv.resize(input.size());
for (int i = 0; i < deriv.size(); i++) { for (int i = 0; i < deriv.size(); i++) {
@ -295,7 +295,7 @@ std::vector<std::vector<double>> Convolutions::gradOrientation(std::vector<std::
return deriv; return deriv;
} }
std::vector<std::vector<std::vector<double>>> Convolutions::computeM(std::vector<std::vector<double>> input) { std::vector<std::vector<std::vector<double>>> MLPPConvolutions::computeM(std::vector<std::vector<double>> input) {
double const SIGMA = 1; double const SIGMA = 1;
double const GAUSSIAN_SIZE = 3; double const GAUSSIAN_SIZE = 3;
@ -313,7 +313,7 @@ std::vector<std::vector<std::vector<double>>> Convolutions::computeM(std::vector
std::vector<std::vector<std::vector<double>>> M = { xxDeriv, yyDeriv, xyDeriv }; std::vector<std::vector<std::vector<double>>> M = { xxDeriv, yyDeriv, xyDeriv };
return M; return M;
} }
std::vector<std::vector<std::string>> Convolutions::harrisCornerDetection(std::vector<std::vector<double>> input) { std::vector<std::vector<std::string>> MLPPConvolutions::harrisCornerDetection(std::vector<std::vector<double>> input) {
double const k = 0.05; // Empirically determined wherein k -> [0.04, 0.06], though conventionally 0.05 is typically used as well. double const k = 0.05; // Empirically determined wherein k -> [0.04, 0.06], though conventionally 0.05 is typically used as well.
LinAlg alg; LinAlg alg;
std::vector<std::vector<std::vector<double>>> M = computeM(input); std::vector<std::vector<std::vector<double>>> M = computeM(input);
@ -340,34 +340,34 @@ std::vector<std::vector<std::string>> Convolutions::harrisCornerDetection(std::v
return imageTypes; return imageTypes;
} }
std::vector<std::vector<double>> Convolutions::getPrewittHorizontal() { std::vector<std::vector<double>> MLPPConvolutions::getPrewittHorizontal() {
return prewittHorizontal; return prewittHorizontal;
} }
std::vector<std::vector<double>> Convolutions::getPrewittVertical() { std::vector<std::vector<double>> MLPPConvolutions::getPrewittVertical() {
return prewittVertical; return prewittVertical;
} }
std::vector<std::vector<double>> Convolutions::getSobelHorizontal() { std::vector<std::vector<double>> MLPPConvolutions::getSobelHorizontal() {
return sobelHorizontal; return sobelHorizontal;
} }
std::vector<std::vector<double>> Convolutions::getSobelVertical() { std::vector<std::vector<double>> MLPPConvolutions::getSobelVertical() {
return sobelVertical; return sobelVertical;
} }
std::vector<std::vector<double>> Convolutions::getScharrHorizontal() { std::vector<std::vector<double>> MLPPConvolutions::getScharrHorizontal() {
return scharrHorizontal; return scharrHorizontal;
} }
std::vector<std::vector<double>> Convolutions::getScharrVertical() { std::vector<std::vector<double>> MLPPConvolutions::getScharrVertical() {
return scharrVertical; return scharrVertical;
} }
std::vector<std::vector<double>> Convolutions::getRobertsHorizontal() { std::vector<std::vector<double>> MLPPConvolutions::getRobertsHorizontal() {
return robertsHorizontal; return robertsHorizontal;
} }
std::vector<std::vector<double>> Convolutions::getRobertsVertical() { std::vector<std::vector<double>> MLPPConvolutions::getRobertsVertical() {
return robertsVertical; return robertsVertical;
} }

View File

@ -5,9 +5,9 @@
#include <vector> #include <vector>
#include <string> #include <string>
class Convolutions { class MLPPConvolutions {
public: public:
Convolutions(); MLPPConvolutions();
std::vector<std::vector<double>> convolve(std::vector<std::vector<double>> input, std::vector<std::vector<double>> filter, int S, int P = 0); std::vector<std::vector<double>> convolve(std::vector<std::vector<double>> input, std::vector<std::vector<double>> filter, int S, int P = 0);
std::vector<std::vector<std::vector<double>>> convolve(std::vector<std::vector<std::vector<double>>> input, std::vector<std::vector<std::vector<double>>> filter, int S, int P = 0); std::vector<std::vector<std::vector<double>>> convolve(std::vector<std::vector<std::vector<double>>> input, std::vector<std::vector<std::vector<double>>> filter, int S, int P = 0);
std::vector<std::vector<double>> pool(std::vector<std::vector<double>> input, int F, int S, std::string type); std::vector<std::vector<double>> pool(std::vector<std::vector<double>> input, int F, int S, std::string type);

View File

@ -11,7 +11,7 @@
#include <iostream> #include <iostream>
double Cost::MSE(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::MSE(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]); sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]);
@ -19,7 +19,7 @@ double Cost::MSE(std::vector<double> y_hat, std::vector<double> y) {
return sum / 2 * y_hat.size(); return sum / 2 * y_hat.size();
} }
double Cost::MSE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::MSE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -29,17 +29,17 @@ double Cost::MSE(std::vector<std::vector<double>> y_hat, std::vector<std::vector
return sum / 2 * y_hat.size(); return sum / 2 * y_hat.size();
} }
std::vector<double> Cost::MSEDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::MSEDeriv(std::vector<double> y_hat, std::vector<double> y) {
LinAlg alg; LinAlg alg;
return alg.subtraction(y_hat, y); return alg.subtraction(y_hat, y);
} }
std::vector<std::vector<double>> Cost::MSEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::MSEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
LinAlg alg; LinAlg alg;
return alg.subtraction(y_hat, y); return alg.subtraction(y_hat, y);
} }
double Cost::RMSE(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::RMSE(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]); sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]);
@ -47,7 +47,7 @@ double Cost::RMSE(std::vector<double> y_hat, std::vector<double> y) {
return sqrt(sum / y_hat.size()); return sqrt(sum / y_hat.size());
} }
double Cost::RMSE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::RMSE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -57,17 +57,17 @@ double Cost::RMSE(std::vector<std::vector<double>> y_hat, std::vector<std::vecto
return sqrt(sum / y_hat.size()); return sqrt(sum / y_hat.size());
} }
std::vector<double> Cost::RMSEDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::RMSEDeriv(std::vector<double> y_hat, std::vector<double> y) {
LinAlg alg; LinAlg alg;
return alg.scalarMultiply(1 / (2 * sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y)); return alg.scalarMultiply(1 / (2 * sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
} }
std::vector<std::vector<double>> Cost::RMSEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::RMSEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
LinAlg alg; LinAlg alg;
return alg.scalarMultiply(1 / (2 / sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y)); return alg.scalarMultiply(1 / (2 / sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
} }
double Cost::MAE(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::MAE(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
sum += abs((y_hat[i] - y[i])); sum += abs((y_hat[i] - y[i]));
@ -75,7 +75,7 @@ double Cost::MAE(std::vector<double> y_hat, std::vector<double> y) {
return sum / y_hat.size(); return sum / y_hat.size();
} }
double Cost::MAE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::MAE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -85,7 +85,7 @@ double Cost::MAE(std::vector<std::vector<double>> y_hat, std::vector<std::vector
return sum / y_hat.size(); return sum / y_hat.size();
} }
std::vector<double> Cost::MAEDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::MAEDeriv(std::vector<double> y_hat, std::vector<double> y) {
std::vector<double> deriv; std::vector<double> deriv;
deriv.resize(y_hat.size()); deriv.resize(y_hat.size());
for (int i = 0; i < deriv.size(); i++) { for (int i = 0; i < deriv.size(); i++) {
@ -100,7 +100,7 @@ std::vector<double> Cost::MAEDeriv(std::vector<double> y_hat, std::vector<double
return deriv; return deriv;
} }
std::vector<std::vector<double>> Cost::MAEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::MAEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
std::vector<std::vector<double>> deriv; std::vector<std::vector<double>> deriv;
deriv.resize(y_hat.size()); deriv.resize(y_hat.size());
for (int i = 0; i < deriv.size(); i++) { for (int i = 0; i < deriv.size(); i++) {
@ -120,7 +120,7 @@ std::vector<std::vector<double>> Cost::MAEDeriv(std::vector<std::vector<double>>
return deriv; return deriv;
} }
double Cost::MBE(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::MBE(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
sum += (y_hat[i] - y[i]); sum += (y_hat[i] - y[i]);
@ -128,7 +128,7 @@ double Cost::MBE(std::vector<double> y_hat, std::vector<double> y) {
return sum / y_hat.size(); return sum / y_hat.size();
} }
double Cost::MBE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::MBE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -138,17 +138,17 @@ double Cost::MBE(std::vector<std::vector<double>> y_hat, std::vector<std::vector
return sum / y_hat.size(); return sum / y_hat.size();
} }
std::vector<double> Cost::MBEDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::MBEDeriv(std::vector<double> y_hat, std::vector<double> y) {
LinAlg alg; LinAlg alg;
return alg.onevec(y_hat.size()); return alg.onevec(y_hat.size());
} }
std::vector<std::vector<double>> Cost::MBEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::MBEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
LinAlg alg; LinAlg alg;
return alg.onemat(y_hat.size(), y_hat[0].size()); return alg.onemat(y_hat.size(), y_hat[0].size());
} }
double Cost::LogLoss(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::LogLoss(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
double eps = 1e-8; double eps = 1e-8;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
@ -158,7 +158,7 @@ double Cost::LogLoss(std::vector<double> y_hat, std::vector<double> y) {
return sum / y_hat.size(); return sum / y_hat.size();
} }
double Cost::LogLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::LogLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
double eps = 1e-8; double eps = 1e-8;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
@ -170,17 +170,17 @@ double Cost::LogLoss(std::vector<std::vector<double>> y_hat, std::vector<std::ve
return sum / y_hat.size(); return sum / y_hat.size();
} }
std::vector<double> Cost::LogLossDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::LogLossDeriv(std::vector<double> y_hat, std::vector<double> y) {
LinAlg alg; LinAlg alg;
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat)))); return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
} }
std::vector<std::vector<double>> Cost::LogLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::LogLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
LinAlg alg; LinAlg alg;
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat)))); return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
} }
double Cost::CrossEntropy(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::CrossEntropy(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
sum += y[i] * std::log(y_hat[i]); sum += y[i] * std::log(y_hat[i]);
@ -189,7 +189,7 @@ double Cost::CrossEntropy(std::vector<double> y_hat, std::vector<double> y) {
return -1 * sum; return -1 * sum;
} }
double Cost::CrossEntropy(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::CrossEntropy(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -200,17 +200,17 @@ double Cost::CrossEntropy(std::vector<std::vector<double>> y_hat, std::vector<st
return -1 * sum; return -1 * sum;
} }
std::vector<double> Cost::CrossEntropyDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::CrossEntropyDeriv(std::vector<double> y_hat, std::vector<double> y) {
LinAlg alg; LinAlg alg;
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)); return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
} }
std::vector<std::vector<double>> Cost::CrossEntropyDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::CrossEntropyDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
LinAlg alg; LinAlg alg;
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)); return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
} }
double Cost::HuberLoss(std::vector<double> y_hat, std::vector<double> y, double delta) { double MLPPCost::HuberLoss(std::vector<double> y_hat, std::vector<double> y, double delta) {
LinAlg alg; LinAlg alg;
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
@ -223,7 +223,7 @@ double Cost::HuberLoss(std::vector<double> y_hat, std::vector<double> y, double
return sum; return sum;
} }
double Cost::HuberLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double delta) { double MLPPCost::HuberLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double delta) {
LinAlg alg; LinAlg alg;
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
@ -238,7 +238,7 @@ double Cost::HuberLoss(std::vector<std::vector<double>> y_hat, std::vector<std::
return sum; return sum;
} }
std::vector<double> Cost::HuberLossDeriv(std::vector<double> y_hat, std::vector<double> y, double delta) { std::vector<double> MLPPCost::HuberLossDeriv(std::vector<double> y_hat, std::vector<double> y, double delta) {
LinAlg alg; LinAlg alg;
double sum = 0; double sum = 0;
std::vector<double> deriv; std::vector<double> deriv;
@ -258,7 +258,7 @@ std::vector<double> Cost::HuberLossDeriv(std::vector<double> y_hat, std::vector<
return deriv; return deriv;
} }
std::vector<std::vector<double>> Cost::HuberLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double delta) { std::vector<std::vector<double>> MLPPCost::HuberLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double delta) {
LinAlg alg; LinAlg alg;
double sum = 0; double sum = 0;
std::vector<std::vector<double>> deriv; std::vector<std::vector<double>> deriv;
@ -283,7 +283,7 @@ std::vector<std::vector<double>> Cost::HuberLossDeriv(std::vector<std::vector<do
return deriv; return deriv;
} }
double Cost::HingeLoss(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::HingeLoss(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
sum += fmax(0, 1 - y[i] * y_hat[i]); sum += fmax(0, 1 - y[i] * y_hat[i]);
@ -292,7 +292,7 @@ double Cost::HingeLoss(std::vector<double> y_hat, std::vector<double> y) {
return sum / y_hat.size(); return sum / y_hat.size();
} }
double Cost::HingeLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::HingeLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -303,7 +303,7 @@ double Cost::HingeLoss(std::vector<std::vector<double>> y_hat, std::vector<std::
return sum / y_hat.size(); return sum / y_hat.size();
} }
std::vector<double> Cost::HingeLossDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::HingeLossDeriv(std::vector<double> y_hat, std::vector<double> y) {
std::vector<double> deriv; std::vector<double> deriv;
deriv.resize(y_hat.size()); deriv.resize(y_hat.size());
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
@ -316,7 +316,7 @@ std::vector<double> Cost::HingeLossDeriv(std::vector<double> y_hat, std::vector<
return deriv; return deriv;
} }
std::vector<std::vector<double>> Cost::HingeLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::HingeLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
std::vector<std::vector<double>> deriv; std::vector<std::vector<double>> deriv;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -330,7 +330,7 @@ std::vector<std::vector<double>> Cost::HingeLossDeriv(std::vector<std::vector<do
return deriv; return deriv;
} }
double Cost::WassersteinLoss(std::vector<double> y_hat, std::vector<double> y) { double MLPPCost::WassersteinLoss(std::vector<double> y_hat, std::vector<double> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
sum += y_hat[i] * y[i]; sum += y_hat[i] * y[i];
@ -338,7 +338,7 @@ double Cost::WassersteinLoss(std::vector<double> y_hat, std::vector<double> y) {
return -sum / y_hat.size(); return -sum / y_hat.size();
} }
double Cost::WassersteinLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MLPPCost::WassersteinLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
double sum = 0; double sum = 0;
for (int i = 0; i < y_hat.size(); i++) { for (int i = 0; i < y_hat.size(); i++) {
for (int j = 0; j < y_hat[i].size(); j++) { for (int j = 0; j < y_hat[i].size(); j++) {
@ -348,39 +348,39 @@ double Cost::WassersteinLoss(std::vector<std::vector<double>> y_hat, std::vector
return -sum / y_hat.size(); return -sum / y_hat.size();
} }
std::vector<double> Cost::WassersteinLossDeriv(std::vector<double> y_hat, std::vector<double> y) { std::vector<double> MLPPCost::WassersteinLossDeriv(std::vector<double> y_hat, std::vector<double> y) {
LinAlg alg; LinAlg alg;
return alg.scalarMultiply(-1, y); // Simple. return alg.scalarMultiply(-1, y); // Simple.
} }
std::vector<std::vector<double>> Cost::WassersteinLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { std::vector<std::vector<double>> MLPPCost::WassersteinLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
LinAlg alg; LinAlg alg;
return alg.scalarMultiply(-1, y); // Simple. return alg.scalarMultiply(-1, y); // Simple.
} }
double Cost::HingeLoss(std::vector<double> y_hat, std::vector<double> y, std::vector<double> weights, double C) { double MLPPCost::HingeLoss(std::vector<double> y_hat, std::vector<double> y, std::vector<double> weights, double C) {
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge"); return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
} }
double Cost::HingeLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, std::vector<std::vector<double>> weights, double C) { double MLPPCost::HingeLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, std::vector<std::vector<double>> weights, double C) {
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge"); return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
} }
std::vector<double> Cost::HingeLossDeriv(std::vector<double> y_hat, std::vector<double> y, double C) { std::vector<double> MLPPCost::HingeLossDeriv(std::vector<double> y_hat, std::vector<double> y, double C) {
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y)); return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
} }
std::vector<std::vector<double>> Cost::HingeLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double C) { std::vector<std::vector<double>> MLPPCost::HingeLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double C) {
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y)); return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
} }
double Cost::dualFormSVM(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) { double MLPPCost::dualFormSVM(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) {
LinAlg alg; LinAlg alg;
std::vector<std::vector<double>> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. std::vector<std::vector<double>> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y.
std::vector<std::vector<double>> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations. std::vector<std::vector<double>> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations.
@ -391,7 +391,7 @@ double Cost::dualFormSVM(std::vector<double> alpha, std::vector<std::vector<doub
return -alg.dot(one, alpha) + 0.5 * alphaQ; return -alg.dot(one, alpha) + 0.5 * alphaQ;
} }
std::vector<double> Cost::dualFormSVMDeriv(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) { std::vector<double> MLPPCost::dualFormSVMDeriv(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) {
LinAlg alg; LinAlg alg;
std::vector<std::vector<double>> Y = alg.zeromat(y.size(), y.size()); std::vector<std::vector<double>> Y = alg.zeromat(y.size(), y.size());
for (int i = 0; i < y.size(); i++) { for (int i = 0; i < y.size(); i++) {

View File

@ -11,7 +11,7 @@
#include <vector> #include <vector>
class Cost { class MLPPCost {
public: public:
// Regression Costs // Regression Costs
double MSE(std::vector<double> y_hat, std::vector<double> y); double MSE(std::vector<double> y_hat, std::vector<double> y);

View File

@ -32,7 +32,7 @@ double DualSVC::modelTest(std::vector<double> x) {
} }
void DualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) { void DualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
@ -80,7 +80,7 @@ void DualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) {
} }
// void DualSVC::SGD(double learning_rate, int max_epoch, bool UI){ // void DualSVC::SGD(double learning_rate, int max_epoch, bool UI){
// class Cost cost; // class MLPPCost cost;
// MLPPActivation avn; // MLPPActivation avn;
// LinAlg alg; // LinAlg alg;
// Reg regularization; // Reg regularization;
@ -113,7 +113,7 @@ void DualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) {
// } // }
// void DualSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){ // void DualSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
// class Cost cost; // class MLPPCost cost;
// MLPPActivation avn; // MLPPActivation avn;
// LinAlg alg; // LinAlg alg;
// Reg regularization; // Reg regularization;
@ -163,7 +163,7 @@ void DualSVC::save(std::string fileName) {
} }
double DualSVC::Cost(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) { double DualSVC::Cost(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) {
class Cost cost; class MLPPCost cost;
return cost.dualFormSVM(alpha, X, y); return cost.dualFormSVM(alpha, X, y);
} }

View File

@ -205,7 +205,7 @@ void ExpReg::save(std::string fileName) {
double ExpReg::Cost(std::vector<double> y_hat, std::vector<double> y) { double ExpReg::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
} }

View File

@ -29,7 +29,7 @@ std::vector<std::vector<double>> GAN::generateExample(int n) {
} }
void GAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { void GAN::gradientDescent(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
int epoch = 1; int epoch = 1;
@ -147,7 +147,7 @@ std::vector<double> GAN::modelSetTestDiscriminator(std::vector<std::vector<doubl
double GAN::Cost(std::vector<double> y_hat, std::vector<double> y) { double GAN::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
double totalRegTerm = 0; double totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost]; auto cost_function = outputLayer->cost_map[outputLayer->cost];
@ -208,7 +208,7 @@ void GAN::updateGeneratorParameters(std::vector<std::vector<std::vector<double>>
} }
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> GAN::computeDiscriminatorGradients(std::vector<double> y_hat, std::vector<double> outputSet) { std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> GAN::computeDiscriminatorGradients(std::vector<double> y_hat, std::vector<double> outputSet) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
@ -244,7 +244,7 @@ std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> G
} }
std::vector<std::vector<std::vector<double>>> GAN::computeGeneratorGradients(std::vector<double> y_hat, std::vector<double> outputSet) { std::vector<std::vector<std::vector<double>>> GAN::computeGeneratorGradients(std::vector<double> y_hat, std::vector<double> outputSet) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;

View File

@ -219,7 +219,7 @@ void LinReg::save(std::string fileName) {
double LinReg::Cost(std::vector<double> y_hat, std::vector<double> y) { double LinReg::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
} }

View File

@ -182,7 +182,7 @@ void LogReg::save(std::string fileName) {
double LogReg::Cost(std::vector<double> y_hat, std::vector<double> y) { double LogReg::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); return cost.LogLoss(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
} }

View File

@ -53,7 +53,7 @@ std::vector<double> MANN::modelTest(std::vector<double> x) {
} }
void MANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { void MANN::gradientDescent(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
@ -159,7 +159,7 @@ void MANN::addOutputLayer(std::string activation, std::string loss, std::string
double MANN::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double MANN::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
double totalRegTerm = 0; double totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost]; auto cost_function = outputLayer->cost_map[outputLayer->cost];

View File

@ -227,7 +227,7 @@ void MLP::save(std::string fileName) {
double MLP::Cost(std::vector<double> y_hat, std::vector<double> y) { double MLP::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg); return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg);
} }

View File

@ -98,22 +98,22 @@ MultiOutputLayer::MultiOutputLayer(int n_output, int n_hidden, std::string activ
activation_map["Arcoth"] = &MLPPActivation::arcoth; activation_map["Arcoth"] = &MLPPActivation::arcoth;
activationTest_map["Arcoth"] = &MLPPActivation::arcoth; activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
costDeriv_map["MSE"] = &Cost::MSEDeriv; costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
cost_map["MSE"] = &Cost::MSE; cost_map["MSE"] = &MLPPCost::MSE;
costDeriv_map["RMSE"] = &Cost::RMSEDeriv; costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
cost_map["RMSE"] = &Cost::RMSE; cost_map["RMSE"] = &MLPPCost::RMSE;
costDeriv_map["MAE"] = &Cost::MAEDeriv; costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
cost_map["MAE"] = &Cost::MAE; cost_map["MAE"] = &MLPPCost::MAE;
costDeriv_map["MBE"] = &Cost::MBEDeriv; costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
cost_map["MBE"] = &Cost::MBE; cost_map["MBE"] = &MLPPCost::MBE;
costDeriv_map["LogLoss"] = &Cost::LogLossDeriv; costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
cost_map["LogLoss"] = &Cost::LogLoss; cost_map["LogLoss"] = &MLPPCost::LogLoss;
costDeriv_map["CrossEntropy"] = &Cost::CrossEntropyDeriv; costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &Cost::CrossEntropy; cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
costDeriv_map["HingeLoss"] = &Cost::HingeLossDeriv; costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["HingeLoss"] = &Cost::HingeLoss; cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["WassersteinLoss"] = &Cost::HingeLossDeriv; costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["WassersteinLoss"] = &Cost::HingeLoss; cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
} }
void MultiOutputLayer::forwardPass() { void MultiOutputLayer::forwardPass() {

View File

@ -35,8 +35,8 @@ public:
std::map<std::string, std::vector<std::vector<double>> (MLPPActivation::*)(std::vector<std::vector<double>>, bool)> activation_map; std::map<std::string, std::vector<std::vector<double>> (MLPPActivation::*)(std::vector<std::vector<double>>, bool)> activation_map;
std::map<std::string, std::vector<double> (MLPPActivation::*)(std::vector<double>, bool)> activationTest_map; std::map<std::string, std::vector<double> (MLPPActivation::*)(std::vector<double>, bool)> activationTest_map;
std::map<std::string, double (Cost::*)(std::vector<std::vector<double>>, std::vector<std::vector<double>>)> cost_map; std::map<std::string, double (MLPPCost::*)(std::vector<std::vector<double>>, std::vector<std::vector<double>>)> cost_map;
std::map<std::string, std::vector<std::vector<double>> (Cost::*)(std::vector<std::vector<double>>, std::vector<std::vector<double>>)> costDeriv_map; std::map<std::string, std::vector<std::vector<double>> (MLPPCost::*)(std::vector<std::vector<double>>, std::vector<std::vector<double>>)> costDeriv_map;
std::vector<double> z_test; std::vector<double> z_test;
std::vector<double> a_test; std::vector<double> a_test;

View File

@ -95,22 +95,22 @@ OutputLayer::OutputLayer(int n_hidden, std::string activation, std::string cost,
activation_map["Arcoth"] = &MLPPActivation::arcoth; activation_map["Arcoth"] = &MLPPActivation::arcoth;
activationTest_map["Arcoth"] = &MLPPActivation::arcoth; activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
costDeriv_map["MSE"] = &Cost::MSEDeriv; costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
cost_map["MSE"] = &Cost::MSE; cost_map["MSE"] = &MLPPCost::MSE;
costDeriv_map["RMSE"] = &Cost::RMSEDeriv; costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
cost_map["RMSE"] = &Cost::RMSE; cost_map["RMSE"] = &MLPPCost::RMSE;
costDeriv_map["MAE"] = &Cost::MAEDeriv; costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
cost_map["MAE"] = &Cost::MAE; cost_map["MAE"] = &MLPPCost::MAE;
costDeriv_map["MBE"] = &Cost::MBEDeriv; costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
cost_map["MBE"] = &Cost::MBE; cost_map["MBE"] = &MLPPCost::MBE;
costDeriv_map["LogLoss"] = &Cost::LogLossDeriv; costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
cost_map["LogLoss"] = &Cost::LogLoss; cost_map["LogLoss"] = &MLPPCost::LogLoss;
costDeriv_map["CrossEntropy"] = &Cost::CrossEntropyDeriv; costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &Cost::CrossEntropy; cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
costDeriv_map["HingeLoss"] = &Cost::HingeLossDeriv; costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["HingeLoss"] = &Cost::HingeLoss; cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["WassersteinLoss"] = &Cost::HingeLossDeriv; costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["WassersteinLoss"] = &Cost::HingeLoss; cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
} }
void OutputLayer::forwardPass() { void OutputLayer::forwardPass() {

View File

@ -34,8 +34,8 @@ public:
std::map<std::string, std::vector<double> (MLPPActivation::*)(std::vector<double>, bool)> activation_map; std::map<std::string, std::vector<double> (MLPPActivation::*)(std::vector<double>, bool)> activation_map;
std::map<std::string, double (MLPPActivation::*)(double, bool)> activationTest_map; std::map<std::string, double (MLPPActivation::*)(double, bool)> activationTest_map;
std::map<std::string, double (Cost::*)(std::vector<double>, std::vector<double>)> cost_map; std::map<std::string, double (MLPPCost::*)(std::vector<double>, std::vector<double>)> cost_map;
std::map<std::string, std::vector<double> (Cost::*)(std::vector<double>, std::vector<double>)> costDeriv_map; std::map<std::string, std::vector<double> (MLPPCost::*)(std::vector<double>, std::vector<double>)> costDeriv_map;
double z_test; double z_test;
double a_test; double a_test;

View File

@ -209,7 +209,7 @@ void ProbitReg::save(std::string fileName) {
double ProbitReg::Cost(std::vector<double> y_hat, std::vector<double> y) { double ProbitReg::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
} }

View File

@ -246,7 +246,7 @@ std::vector<std::vector<double>> SoftmaxNet::getEmbeddings() {
double SoftmaxNet::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double SoftmaxNet::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
Reg regularization; Reg regularization;
Data data; Data data;
class Cost cost; class MLPPCost cost;
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights1, lambda, alpha, reg) + regularization.regTerm(weights2, lambda, alpha, reg); return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights1, lambda, alpha, reg) + regularization.regTerm(weights2, lambda, alpha, reg);
} }

View File

@ -165,7 +165,7 @@ void SoftmaxReg::save(std::string fileName) {
double SoftmaxReg::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) { double SoftmaxReg::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
} }

View File

@ -31,7 +31,7 @@ double SVC::modelTest(std::vector<double> x) {
} }
void SVC::gradientDescent(double learning_rate, int max_epoch, bool UI) { void SVC::gradientDescent(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
@ -64,7 +64,7 @@ void SVC::gradientDescent(double learning_rate, int max_epoch, bool UI) {
} }
void SVC::SGD(double learning_rate, int max_epoch, bool UI) { void SVC::SGD(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
@ -107,7 +107,7 @@ void SVC::SGD(double learning_rate, int max_epoch, bool UI) {
} }
void SVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { void SVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
@ -159,7 +159,7 @@ void SVC::save(std::string fileName) {
} }
double SVC::Cost(std::vector<double> z, std::vector<double> y, std::vector<double> weights, double C) { double SVC::Cost(std::vector<double> z, std::vector<double> y, std::vector<double> weights, double C) {
class Cost cost; class MLPPCost cost;
return cost.HingeLoss(z, y, weights, C); return cost.HingeLoss(z, y, weights, C);
} }

View File

@ -158,7 +158,7 @@ void TanhReg::save(std::string fileName) {
double TanhReg::Cost(std::vector<double> y_hat, std::vector<double> y) { double TanhReg::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
} }

View File

@ -29,7 +29,7 @@ std::vector<std::vector<double>> WGAN::generateExample(int n) {
} }
void WGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { void WGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) {
class Cost cost; class MLPPCost cost;
LinAlg alg; LinAlg alg;
double cost_prev = 0; double cost_prev = 0;
int epoch = 1; int epoch = 1;
@ -156,7 +156,7 @@ std::vector<double> WGAN::modelSetTestDiscriminator(std::vector<std::vector<doub
double WGAN::Cost(std::vector<double> y_hat, std::vector<double> y) { double WGAN::Cost(std::vector<double> y_hat, std::vector<double> y) {
Reg regularization; Reg regularization;
class Cost cost; class MLPPCost cost;
double totalRegTerm = 0; double totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost]; auto cost_function = outputLayer->cost_map[outputLayer->cost];
@ -217,7 +217,7 @@ void WGAN::updateGeneratorParameters(std::vector<std::vector<std::vector<double>
} }
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> WGAN::computeDiscriminatorGradients(std::vector<double> y_hat, std::vector<double> outputSet) { std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> WGAN::computeDiscriminatorGradients(std::vector<double> y_hat, std::vector<double> outputSet) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;
@ -253,7 +253,7 @@ std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> W
} }
std::vector<std::vector<std::vector<double>>> WGAN::computeGeneratorGradients(std::vector<double> y_hat, std::vector<double> outputSet) { std::vector<std::vector<std::vector<double>>> WGAN::computeGeneratorGradients(std::vector<double> y_hat, std::vector<double> outputSet) {
class Cost cost; class MLPPCost cost;
MLPPActivation avn; MLPPActivation avn;
LinAlg alg; LinAlg alg;
Reg regularization; Reg regularization;