mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-21 15:27:17 +01:00
Now MLPPDualSVC uses engine classes.
This commit is contained in:
parent
17486baae9
commit
0a1d42f627
@ -11,14 +11,13 @@
|
||||
#include "../regularization/reg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::model_set_test(std::vector<std::vector<real_t>> X) {
|
||||
Ref<MLPPVector> MLPPDualSVC::model_set_test(const Ref<MLPPMatrix> &X) {
|
||||
return evaluatem(X);
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::model_test(std::vector<real_t> x) {
|
||||
real_t MLPPDualSVC::model_test(const Ref<MLPPVector> &x) {
|
||||
return evaluatev(x);
|
||||
}
|
||||
|
||||
@ -32,25 +31,38 @@ void MLPPDualSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
|
||||
|
||||
forward_pass();
|
||||
|
||||
Ref<MLPPVector> input_set_i_row_tmp;
|
||||
input_set_i_row_tmp.instance();
|
||||
input_set_i_row_tmp->resize(_input_set->size().x);
|
||||
|
||||
Ref<MLPPVector> input_set_j_row_tmp;
|
||||
input_set_j_row_tmp.instance();
|
||||
input_set_j_row_tmp->resize(_input_set->size().x);
|
||||
|
||||
while (true) {
|
||||
cost_prev = cost(_alpha, _input_set, _output_set);
|
||||
|
||||
_alpha = alg.subtraction(_alpha, alg.scalarMultiply(learning_rate, mlpp_cost.dualFormSVMDeriv(_alpha, _input_set, _output_set)));
|
||||
_alpha = alg.subtractionnv(_alpha, alg.scalar_multiplynv(learning_rate, mlpp_cost.dual_form_svm_deriv(_alpha, _input_set, _output_set)));
|
||||
|
||||
alpha_projection();
|
||||
|
||||
// Calculating the bias
|
||||
real_t biasGradient = 0;
|
||||
for (uint32_t i = 0; i < _alpha.size(); i++) {
|
||||
for (int i = 0; i < _alpha->size(); i++) {
|
||||
real_t sum = 0;
|
||||
if (_alpha[i] < _C && _alpha[i] > 0) {
|
||||
for (uint32_t j = 0; j < _alpha.size(); j++) {
|
||||
if (_alpha[j] > 0) {
|
||||
sum += _alpha[j] * _output_set[j] * alg.dot(_input_set[j], _input_set[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
if (_alpha->get_element(i) < _C && _alpha->get_element(i) > 0) {
|
||||
for (int j = 0; j < _alpha->size(); j++) {
|
||||
if (_alpha->get_element(j) > 0) {
|
||||
_input_set->get_row_into_mlpp_vector(i, input_set_i_row_tmp);
|
||||
_input_set->get_row_into_mlpp_vector(j, input_set_j_row_tmp);
|
||||
|
||||
sum += _alpha->get_element(j) * _output_set->get_element(j) * alg.dotv(input_set_j_row_tmp, input_set_i_row_tmp); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
}
|
||||
}
|
||||
}
|
||||
biasGradient = (1 - _output_set[i] * sum) / _output_set[i];
|
||||
|
||||
biasGradient = (1 - _output_set->get_element(i) * sum) / _output_set->get_element(i);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
@ -60,9 +72,8 @@ void MLPPDualSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
|
||||
|
||||
// UI PORTION
|
||||
if (ui) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_alpha, _input_set, _output_set));
|
||||
MLPPUtilities::UI(_alpha, _bias);
|
||||
std::cout << score() << std::endl; // TO DO: DELETE THIS.
|
||||
MLPPUtilities::cost_info(epoch, cost_prev, cost(_alpha, _input_set, _output_set));
|
||||
MLPPUtilities::print_ui_vb(_alpha, _bias);
|
||||
}
|
||||
|
||||
epoch++;
|
||||
@ -148,20 +159,34 @@ void MLPPDualSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
|
||||
|
||||
real_t MLPPDualSVC::score() {
|
||||
MLPPUtilities util;
|
||||
return util.performance(_y_hat, _output_set);
|
||||
return util.performance_vec(_y_hat, _output_set);
|
||||
}
|
||||
|
||||
MLPPDualSVC::MLPPDualSVC(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, real_t p_C, std::string p_kernel) {
|
||||
void MLPPDualSVC::save(const String &file_name) {
|
||||
MLPPUtilities util;
|
||||
|
||||
//util.saveParameters(file_name, _alpha, _bias);
|
||||
}
|
||||
|
||||
MLPPDualSVC::MLPPDualSVC(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, real_t p_C, KernelMethod p_kernel) {
|
||||
_input_set = p_input_set;
|
||||
_output_set = p_output_set;
|
||||
_n = p_input_set.size();
|
||||
_k = p_input_set[0].size();
|
||||
_n = p_input_set->size().y;
|
||||
_k = p_input_set->size().x;
|
||||
_C = p_C;
|
||||
_kernel = p_kernel;
|
||||
|
||||
_y_hat.resize(_n);
|
||||
_bias = MLPPUtilities::biasInitialization();
|
||||
_alpha = MLPPUtilities::weightInitialization(_n); // One alpha for all training examples, as per the lagrangian multipliers.
|
||||
_y_hat.instance();
|
||||
_y_hat->resize(_n);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
_bias = utils.bias_initializationr();
|
||||
|
||||
_alpha.instance();
|
||||
_alpha->resize(_n);
|
||||
|
||||
utils.weight_initializationv(_alpha); // One alpha for all training examples, as per the lagrangian multipliers.
|
||||
_K = kernel_functionm(_input_set, _input_set, _kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated.
|
||||
}
|
||||
|
||||
@ -170,51 +195,70 @@ MLPPDualSVC::MLPPDualSVC() {
|
||||
MLPPDualSVC::~MLPPDualSVC() {
|
||||
}
|
||||
|
||||
void MLPPDualSVC::save(std::string file_name) {
|
||||
MLPPUtilities util;
|
||||
|
||||
util.saveParameters(file_name, _alpha, _bias);
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
|
||||
real_t MLPPDualSVC::cost(const Ref<MLPPVector> &alpha, const Ref<MLPPMatrix> &X, const Ref<MLPPVector> &y) {
|
||||
class MLPPCost cost;
|
||||
return cost.dualFormSVM(alpha, X, y);
|
||||
|
||||
return cost.dual_form_svm(alpha, X, y);
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::evaluatev(std::vector<real_t> x) {
|
||||
real_t MLPPDualSVC::evaluatev(const Ref<MLPPVector> &x) {
|
||||
MLPPActivation avn;
|
||||
return avn.sign(propagatev(x));
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::propagatev(std::vector<real_t> x) {
|
||||
real_t MLPPDualSVC::propagatev(const Ref<MLPPVector> &x) {
|
||||
MLPPLinAlg alg;
|
||||
real_t z = 0;
|
||||
for (uint32_t j = 0; j < _alpha.size(); j++) {
|
||||
if (_alpha[j] != 0) {
|
||||
z += _alpha[j] * _output_set[j] * alg.dot(_input_set[j], x); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
|
||||
Ref<MLPPVector> input_set_row_tmp;
|
||||
input_set_row_tmp.instance();
|
||||
input_set_row_tmp->resize(_input_set->size().x);
|
||||
|
||||
for (int j = 0; j < _alpha->size(); j++) {
|
||||
if (_alpha->get_element(j) != 0) {
|
||||
_input_set->get_row_into_mlpp_vector(j, input_set_row_tmp);
|
||||
z += _alpha->get_element(j) * _output_set->get_element(j) * alg.dotv(input_set_row_tmp, x); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
}
|
||||
}
|
||||
z += _bias;
|
||||
return z;
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::evaluatem(std::vector<std::vector<real_t>> X) {
|
||||
Ref<MLPPVector> MLPPDualSVC::evaluatem(const Ref<MLPPMatrix> &X) {
|
||||
MLPPActivation avn;
|
||||
return avn.sign(propagatem(X));
|
||||
|
||||
return avn.sign_normv(propagatem(X));
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::propagatem(std::vector<std::vector<real_t>> X) {
|
||||
Ref<MLPPVector> MLPPDualSVC::propagatem(const Ref<MLPPMatrix> &X) {
|
||||
MLPPLinAlg alg;
|
||||
std::vector<real_t> z;
|
||||
for (uint32_t i = 0; i < X.size(); i++) {
|
||||
Ref<MLPPVector> z;
|
||||
z.instance();
|
||||
z->resize(X->size().y);
|
||||
|
||||
Ref<MLPPVector> input_set_row_tmp;
|
||||
input_set_row_tmp.instance();
|
||||
input_set_row_tmp->resize(_input_set->size().x);
|
||||
|
||||
Ref<MLPPVector> x_row_tmp;
|
||||
x_row_tmp.instance();
|
||||
x_row_tmp->resize(X->size().x);
|
||||
|
||||
for (int i = 0; i < X->size().y; i++) {
|
||||
real_t sum = 0;
|
||||
for (uint32_t j = 0; j < _alpha.size(); j++) {
|
||||
if (_alpha[j] != 0) {
|
||||
sum += _alpha[j] * _output_set[j] * alg.dot(_input_set[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
|
||||
for (int j = 0; j < _alpha->size(); j++) {
|
||||
if (_alpha->get_element(j) != 0) {
|
||||
_input_set->get_row_into_mlpp_vector(j, input_set_row_tmp);
|
||||
X->get_row_into_mlpp_vector(i, x_row_tmp);
|
||||
|
||||
sum += _alpha->get_element(j) * _output_set->get_element(j) * alg.dotv(input_set_row_tmp, x_row_tmp); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
}
|
||||
}
|
||||
|
||||
sum += _bias;
|
||||
z.push_back(sum);
|
||||
|
||||
z->set_element(i, sum);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
@ -223,36 +267,40 @@ void MLPPDualSVC::forward_pass() {
|
||||
MLPPActivation avn;
|
||||
|
||||
_z = propagatem(_input_set);
|
||||
_y_hat = avn.sign(_z);
|
||||
_y_hat = avn.sign_normv(_z);
|
||||
}
|
||||
|
||||
void MLPPDualSVC::alpha_projection() {
|
||||
for (uint32_t i = 0; i < _alpha.size(); i++) {
|
||||
if (_alpha[i] > _C) {
|
||||
_alpha[i] = _C;
|
||||
} else if (_alpha[i] < 0) {
|
||||
_alpha[i] = 0;
|
||||
for (int i = 0; i < _alpha->size(); i++) {
|
||||
if (_alpha->get_element(i) > _C) {
|
||||
_alpha->set_element(i, _C);
|
||||
} else if (_alpha->get_element(i) < 0) {
|
||||
_alpha->set_element(i, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::kernel_functionv(std::vector<real_t> u, std::vector<real_t> v, std::string kernel) {
|
||||
real_t MLPPDualSVC::kernel_functionv(const Ref<MLPPVector> &v, const Ref<MLPPVector> &u, KernelMethod kernel) {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
if (kernel == "Linear") {
|
||||
return alg.dot(u, v);
|
||||
if (kernel == KERNEL_METHOD_LINEAR) {
|
||||
return alg.dotv(u, v);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::vector<std::vector<real_t>> MLPPDualSVC::kernel_functionm(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B, std::string kernel) {
|
||||
Ref<MLPPMatrix> MLPPDualSVC::kernel_functionm(const Ref<MLPPMatrix> &U, const Ref<MLPPMatrix> &V, KernelMethod kernel) {
|
||||
MLPPLinAlg alg;
|
||||
if (kernel == "Linear") {
|
||||
return alg.matmult(_input_set, alg.transpose(_input_set));
|
||||
|
||||
if (kernel == KERNEL_METHOD_LINEAR) {
|
||||
return alg.matmultm(_input_set, alg.transposem(_input_set));
|
||||
}
|
||||
|
||||
return std::vector<std::vector<real_t>>();
|
||||
Ref<MLPPMatrix> m;
|
||||
m.instance();
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
void MLPPDualSVC::_bind_methods() {
|
||||
|
@ -15,24 +15,29 @@
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
class MLPPDualSVC : public Reference {
|
||||
GDCLASS(MLPPDualSVC, Reference);
|
||||
|
||||
public:
|
||||
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
|
||||
real_t model_test(std::vector<real_t> x);
|
||||
enum KernelMethod {
|
||||
KERNEL_METHOD_LINEAR = 0,
|
||||
};
|
||||
|
||||
public:
|
||||
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
|
||||
real_t model_test(const Ref<MLPPVector> &x);
|
||||
|
||||
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
//void SGD(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
//void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
|
||||
|
||||
real_t score();
|
||||
void save(std::string file_name);
|
||||
void save(const String &file_name);
|
||||
|
||||
MLPPDualSVC(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, real_t p_C, std::string p_kernel = "Linear");
|
||||
MLPPDualSVC(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, real_t p_C, KernelMethod p_kernel = KERNEL_METHOD_LINEAR);
|
||||
|
||||
MLPPDualSVC();
|
||||
~MLPPDualSVC();
|
||||
@ -40,37 +45,37 @@ public:
|
||||
protected:
|
||||
void init();
|
||||
|
||||
real_t cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y);
|
||||
real_t cost(const Ref<MLPPVector> &alpha, const Ref<MLPPMatrix> &X, const Ref<MLPPVector> &y);
|
||||
|
||||
real_t evaluatev(std::vector<real_t> x);
|
||||
real_t propagatev(std::vector<real_t> x);
|
||||
real_t evaluatev(const Ref<MLPPVector> &x);
|
||||
real_t propagatev(const Ref<MLPPVector> &x);
|
||||
|
||||
std::vector<real_t> evaluatem(std::vector<std::vector<real_t>> X);
|
||||
std::vector<real_t> propagatem(std::vector<std::vector<real_t>> X);
|
||||
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
|
||||
Ref<MLPPVector> propagatem(const Ref<MLPPMatrix> &X);
|
||||
|
||||
void forward_pass();
|
||||
|
||||
void alpha_projection();
|
||||
|
||||
real_t kernel_functionv(std::vector<real_t> v, std::vector<real_t> u, std::string kernel);
|
||||
std::vector<std::vector<real_t>> kernel_functionm(std::vector<std::vector<real_t>> U, std::vector<std::vector<real_t>> V, std::string kernel);
|
||||
real_t kernel_functionv(const Ref<MLPPVector> &v, const Ref<MLPPVector> &u, KernelMethod kernel);
|
||||
Ref<MLPPMatrix> kernel_functionm(const Ref<MLPPMatrix> &U, const Ref<MLPPMatrix> &V, KernelMethod kernel);
|
||||
|
||||
static void _bind_methods();
|
||||
|
||||
std::vector<std::vector<real_t>> _input_set;
|
||||
std::vector<real_t> _output_set;
|
||||
std::vector<real_t> _z;
|
||||
std::vector<real_t> _y_hat;
|
||||
Ref<MLPPMatrix> _input_set;
|
||||
Ref<MLPPVector> _output_set;
|
||||
Ref<MLPPVector> _z;
|
||||
Ref<MLPPVector> _y_hat;
|
||||
real_t _bias;
|
||||
|
||||
std::vector<real_t> _alpha;
|
||||
std::vector<std::vector<real_t>> _K;
|
||||
Ref<MLPPVector> _alpha;
|
||||
Ref<MLPPMatrix> _K;
|
||||
|
||||
real_t _C;
|
||||
int _n;
|
||||
int _k;
|
||||
|
||||
std::string _kernel;
|
||||
KernelMethod _kernel;
|
||||
real_t _p; // Poly
|
||||
real_t _c; // Poly
|
||||
};
|
||||
|
@ -1247,9 +1247,9 @@ void MLPPTests::test_support_vector_classification_kernel(bool ui) {
|
||||
kernelSVMOld.gradientDescent(0.0001, 20, ui);
|
||||
std::cout << "SCORE: " << kernelSVMOld.score() << std::endl;
|
||||
|
||||
MLPPDualSVC kernelSVM(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1000);
|
||||
MLPPDualSVC kernelSVM(dt->get_input(), dt->get_output(), 1000);
|
||||
kernelSVM.gradient_descent(0.0001, 20, ui);
|
||||
std::cout << "SCORE: " << kernelSVM.score() << std::endl;
|
||||
PLOG_MSG("SCORE: " + String::num(kernelSVM.score()));
|
||||
|
||||
std::vector<std::vector<real_t>> linearlyIndependentMat = {
|
||||
{ 1, 2, 3, 4 },
|
||||
|
Loading…
Reference in New Issue
Block a user