2023-01-24 18:57:18 +01:00
|
|
|
|
|
|
|
#ifndef MLPP_SOFTMAX_NET_H
|
|
|
|
#define MLPP_SOFTMAX_NET_H
|
|
|
|
|
2023-01-23 21:13:26 +01:00
|
|
|
//
|
|
|
|
// SoftmaxNet.hpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <string>
|
2023-01-24 19:00:54 +01:00
|
|
|
#include <vector>
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
namespace MLPP {
|
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
class SoftmaxNet {
|
|
|
|
public:
|
|
|
|
SoftmaxNet(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet, int n_hidden, std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
|
|
|
|
std::vector<double> modelTest(std::vector<double> x);
|
|
|
|
std::vector<std::vector<double>> modelSetTest(std::vector<std::vector<double>> X);
|
|
|
|
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
|
|
|
|
void SGD(double learning_rate, int max_epoch, bool UI = 1);
|
|
|
|
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
|
|
|
double score();
|
|
|
|
void save(std::string fileName);
|
|
|
|
|
|
|
|
std::vector<std::vector<double>> getEmbeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings.
|
|
|
|
private:
|
|
|
|
double Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y);
|
|
|
|
|
|
|
|
std::vector<std::vector<double>> Evaluate(std::vector<std::vector<double>> X);
|
|
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>> propagate(std::vector<std::vector<double>> X);
|
|
|
|
std::vector<double> Evaluate(std::vector<double> x);
|
|
|
|
std::tuple<std::vector<double>, std::vector<double>> propagate(std::vector<double> x);
|
|
|
|
void forwardPass();
|
|
|
|
|
|
|
|
std::vector<std::vector<double>> inputSet;
|
|
|
|
std::vector<std::vector<double>> outputSet;
|
|
|
|
std::vector<std::vector<double>> y_hat;
|
|
|
|
|
|
|
|
std::vector<std::vector<double>> weights1;
|
|
|
|
std::vector<std::vector<double>> weights2;
|
|
|
|
|
|
|
|
std::vector<double> bias1;
|
|
|
|
std::vector<double> bias2;
|
|
|
|
|
|
|
|
std::vector<std::vector<double>> z2;
|
|
|
|
std::vector<std::vector<double>> a2;
|
|
|
|
|
|
|
|
int n;
|
|
|
|
int k;
|
|
|
|
int n_class;
|
|
|
|
int n_hidden;
|
|
|
|
|
|
|
|
// Regularization Params
|
|
|
|
std::string reg;
|
|
|
|
double lambda;
|
|
|
|
double alpha; /* This is the controlling param for Elastic Net*/
|
|
|
|
};
|
|
|
|
} //namespace MLPP
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#endif /* SoftmaxNet_hpp */
|