mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-23 15:06:52 +01:00
204 lines
5.5 KiB
C++
204 lines
5.5 KiB
C++
|
//
|
||
|
// SVC.cpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 10/2/20.
|
||
|
//
|
||
|
|
||
|
#include "svc_old.h"
|
||
|
#include "../activation/activation.h"
|
||
|
#include "../cost/cost.h"
|
||
|
#include "../lin_alg/lin_alg.h"
|
||
|
#include "../regularization/reg.h"
|
||
|
#include "../utilities/utilities.h"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <random>
|
||
|
|
||
|
std::vector<real_t> MLPPSVCOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||
|
return Evaluate(X);
|
||
|
}
|
||
|
|
||
|
real_t MLPPSVCOld::modelTest(std::vector<real_t> x) {
|
||
|
return Evaluate(x);
|
||
|
}
|
||
|
|
||
|
void MLPPSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||
|
class MLPPCost cost;
|
||
|
MLPPActivation avn;
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPReg regularization;
|
||
|
real_t cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
forwardPass();
|
||
|
|
||
|
while (true) {
|
||
|
cost_prev = Cost(y_hat, outputSet, weights, C);
|
||
|
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), cost.HingeLossDeriv(z, outputSet, C))));
|
||
|
weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge");
|
||
|
|
||
|
// Calculating the bias gradients
|
||
|
bias += learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputSet, C)) / n;
|
||
|
|
||
|
forwardPass();
|
||
|
|
||
|
// UI PORTION
|
||
|
if (UI) {
|
||
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet, weights, C));
|
||
|
MLPPUtilities::UI(weights, bias);
|
||
|
}
|
||
|
epoch++;
|
||
|
|
||
|
if (epoch > max_epoch) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void MLPPSVCOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
||
|
class MLPPCost cost;
|
||
|
MLPPActivation avn;
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPReg regularization;
|
||
|
|
||
|
real_t cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
|
||
|
while (true) {
|
||
|
std::random_device rd;
|
||
|
std::default_random_engine generator(rd());
|
||
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||
|
int outputIndex = distribution(generator);
|
||
|
|
||
|
//real_t y_hat = Evaluate(inputSet[outputIndex]);
|
||
|
real_t z = propagate(inputSet[outputIndex]);
|
||
|
cost_prev = Cost({ z }, { outputSet[outputIndex] }, weights, C);
|
||
|
|
||
|
real_t costDeriv = cost.HingeLossDeriv(std::vector<real_t>({ z }), std::vector<real_t>({ outputSet[outputIndex] }), C)[0]; // Explicit conversion to avoid ambiguity with overloaded function. Error occured on Ubuntu.
|
||
|
|
||
|
// Weight Updation
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * costDeriv, inputSet[outputIndex]));
|
||
|
weights = regularization.regWeights(weights, learning_rate, 0, "Ridge");
|
||
|
|
||
|
// Bias updation
|
||
|
bias -= learning_rate * costDeriv;
|
||
|
|
||
|
//y_hat = Evaluate({ inputSet[outputIndex] });
|
||
|
|
||
|
if (UI) {
|
||
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ z }, { outputSet[outputIndex] }, weights, C));
|
||
|
MLPPUtilities::UI(weights, bias);
|
||
|
}
|
||
|
|
||
|
epoch++;
|
||
|
|
||
|
if (epoch > max_epoch) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
forwardPass();
|
||
|
}
|
||
|
|
||
|
void MLPPSVCOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
|
||
|
class MLPPCost cost;
|
||
|
MLPPActivation avn;
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPReg regularization;
|
||
|
real_t cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
|
||
|
// Creating the mini-batches
|
||
|
int n_mini_batch = n / mini_batch_size;
|
||
|
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||
|
auto inputMiniBatches = std::get<0>(batches);
|
||
|
auto outputMiniBatches = std::get<1>(batches);
|
||
|
|
||
|
while (true) {
|
||
|
for (int i = 0; i < n_mini_batch; i++) {
|
||
|
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
|
||
|
std::vector<real_t> z = propagate(inputMiniBatches[i]);
|
||
|
cost_prev = Cost(z, outputMiniBatches[i], weights, C);
|
||
|
|
||
|
// Calculating the weight gradients
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C))));
|
||
|
weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge");
|
||
|
|
||
|
// Calculating the bias gradients
|
||
|
bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n;
|
||
|
|
||
|
forwardPass();
|
||
|
|
||
|
y_hat = Evaluate(inputMiniBatches[i]);
|
||
|
|
||
|
if (UI) {
|
||
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C));
|
||
|
MLPPUtilities::UI(weights, bias);
|
||
|
}
|
||
|
}
|
||
|
epoch++;
|
||
|
if (epoch > max_epoch) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
forwardPass();
|
||
|
}
|
||
|
|
||
|
real_t MLPPSVCOld::score() {
|
||
|
MLPPUtilities util;
|
||
|
return util.performance(y_hat, outputSet);
|
||
|
}
|
||
|
|
||
|
void MLPPSVCOld::save(std::string fileName) {
|
||
|
MLPPUtilities util;
|
||
|
util.saveParameters(fileName, weights, bias);
|
||
|
}
|
||
|
|
||
|
MLPPSVCOld::MLPPSVCOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, real_t p_C) {
|
||
|
inputSet = p_inputSet;
|
||
|
outputSet = p_outputSet;
|
||
|
n = inputSet.size();
|
||
|
k = inputSet[0].size();
|
||
|
C = p_C;
|
||
|
|
||
|
y_hat.resize(n);
|
||
|
weights = MLPPUtilities::weightInitialization(k);
|
||
|
bias = MLPPUtilities::biasInitialization();
|
||
|
}
|
||
|
|
||
|
real_t MLPPSVCOld::Cost(std::vector<real_t> z, std::vector<real_t> y, std::vector<real_t> weights, real_t C) {
|
||
|
class MLPPCost cost;
|
||
|
return cost.HingeLoss(z, y, weights, C);
|
||
|
}
|
||
|
|
||
|
std::vector<real_t> MLPPSVCOld::Evaluate(std::vector<std::vector<real_t>> X) {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPActivation avn;
|
||
|
return avn.sign(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
||
|
}
|
||
|
|
||
|
std::vector<real_t> MLPPSVCOld::propagate(std::vector<std::vector<real_t>> X) {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPActivation avn;
|
||
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
||
|
}
|
||
|
|
||
|
real_t MLPPSVCOld::Evaluate(std::vector<real_t> x) {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPActivation avn;
|
||
|
return avn.sign(alg.dot(weights, x) + bias);
|
||
|
}
|
||
|
|
||
|
real_t MLPPSVCOld::propagate(std::vector<real_t> x) {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPActivation avn;
|
||
|
return alg.dot(weights, x) + bias;
|
||
|
}
|
||
|
|
||
|
// sign ( wTx + b )
|
||
|
void MLPPSVCOld::forwardPass() {
|
||
|
MLPPActivation avn;
|
||
|
|
||
|
z = propagate(inputSet);
|
||
|
y_hat = avn.sign(z);
|
||
|
}
|