2023-02-09 17:12:14 +01:00
|
|
|
//
|
|
|
|
// ProbitReg.cpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "probit_reg_old.h"
|
2023-04-22 14:11:07 +02:00
|
|
|
#include "../activation/activation_old.h"
|
2023-04-22 17:17:58 +02:00
|
|
|
#include "../cost/cost_old.h"
|
|
|
|
#include "../lin_alg/lin_alg_old.h"
|
|
|
|
#include "../regularization/reg_old.h"
|
2023-02-09 17:12:14 +01:00
|
|
|
#include "../utilities/utilities.h"
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <random>
|
|
|
|
|
2023-04-27 11:10:48 +02:00
|
|
|
#ifndef M_PI
|
|
|
|
#define M_PI 3.141592653
|
|
|
|
#endif
|
|
|
|
|
2023-02-09 17:12:14 +01:00
|
|
|
MLPPProbitRegOld::MLPPProbitRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
|
|
|
|
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
|
|
|
|
y_hat.resize(n);
|
|
|
|
weights = MLPPUtilities::weightInitialization(k);
|
|
|
|
bias = MLPPUtilities::biasInitialization();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<real_t> MLPPProbitRegOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
|
|
|
return Evaluate(X);
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t MLPPProbitRegOld::modelTest(std::vector<real_t> x) {
|
|
|
|
return Evaluate(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLPPProbitRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
2023-04-22 14:11:07 +02:00
|
|
|
MLPPActivationOld avn;
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
|
|
|
MLPPRegOld regularization;
|
2023-02-09 17:12:14 +01:00
|
|
|
real_t cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
|
|
|
|
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
|
|
|
|
|
|
|
|
// Calculating the weight gradients
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Calculating the bias gradients
|
|
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
if (UI) {
|
|
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
|
|
MLPPUtilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
|
|
|
|
if (epoch > max_epoch) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLPPProbitRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
|
2023-04-22 14:11:07 +02:00
|
|
|
MLPPActivationOld avn;
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
|
|
|
MLPPRegOld regularization;
|
2023-02-09 17:12:14 +01:00
|
|
|
real_t cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
|
|
|
|
std::vector<real_t> error = alg.subtraction(outputSet, y_hat);
|
|
|
|
|
|
|
|
// Calculating the weight gradients
|
|
|
|
weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Calculating the bias gradients
|
|
|
|
bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
if (UI) {
|
|
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
|
|
MLPPUtilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
|
|
|
|
if (epoch > max_epoch) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLPPProbitRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
|
|
|
// NOTE: ∂y_hat/∂z is sparse
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
|
|
|
MLPPRegOld regularization;
|
2023-02-09 17:12:14 +01:00
|
|
|
real_t cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
std::random_device rd;
|
|
|
|
std::default_random_engine generator(rd());
|
|
|
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
|
|
|
int outputIndex = distribution(generator);
|
|
|
|
|
|
|
|
real_t y_hat = Evaluate(inputSet[outputIndex]);
|
|
|
|
real_t z = propagate(inputSet[outputIndex]);
|
|
|
|
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
|
|
|
|
|
|
|
|
real_t error = y_hat - outputSet[outputIndex];
|
|
|
|
|
|
|
|
// Weight Updation
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2)), inputSet[outputIndex]));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Bias updation
|
|
|
|
bias -= learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2));
|
|
|
|
|
|
|
|
y_hat = Evaluate({ inputSet[outputIndex] });
|
|
|
|
|
|
|
|
if (UI) {
|
|
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
|
|
|
|
MLPPUtilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
|
|
|
|
if (epoch > max_epoch) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
forwardPass();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLPPProbitRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
|
2023-04-22 14:11:07 +02:00
|
|
|
MLPPActivationOld avn;
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
|
|
|
MLPPRegOld regularization;
|
2023-02-09 17:12:14 +01:00
|
|
|
real_t cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
|
|
|
|
// Creating the mini-batches
|
|
|
|
int n_mini_batch = n / mini_batch_size;
|
|
|
|
auto createMiniBatchesResult = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
|
|
|
auto inputMiniBatches = std::get<0>(createMiniBatchesResult);
|
|
|
|
auto outputMiniBatches = std::get<1>(createMiniBatchesResult);
|
|
|
|
|
|
|
|
// Creating the mini-batches
|
|
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
|
|
std::vector<std::vector<real_t>> currentInputSet;
|
|
|
|
std::vector<real_t> currentOutputSet;
|
|
|
|
for (int j = 0; j < n / n_mini_batch; j++) {
|
|
|
|
currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]);
|
|
|
|
currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]);
|
|
|
|
}
|
|
|
|
inputMiniBatches.push_back(currentInputSet);
|
|
|
|
outputMiniBatches.push_back(currentOutputSet);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) {
|
|
|
|
for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) {
|
|
|
|
inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]);
|
|
|
|
outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
|
|
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
std::vector<real_t> z = propagate(inputMiniBatches[i]);
|
|
|
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
|
|
|
|
|
|
|
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
|
|
|
|
// Calculating the weight gradients
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches.size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Calculating the bias gradients
|
|
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / outputMiniBatches.size();
|
|
|
|
y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
|
|
|
|
if (UI) {
|
|
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
|
|
|
MLPPUtilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
forwardPass();
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t MLPPProbitRegOld::score() {
|
|
|
|
MLPPUtilities util;
|
|
|
|
return util.performance(y_hat, outputSet);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLPPProbitRegOld::save(std::string fileName) {
|
|
|
|
MLPPUtilities util;
|
|
|
|
util.saveParameters(fileName, weights, bias);
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t MLPPProbitRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPRegOld regularization;
|
|
|
|
class MLPPCostOld cost;
|
2023-02-09 17:12:14 +01:00
|
|
|
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<real_t> MLPPProbitRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
2023-04-22 14:11:07 +02:00
|
|
|
MLPPActivationOld avn;
|
2023-02-09 17:12:14 +01:00
|
|
|
return avn.gaussianCDF(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<real_t> MLPPProbitRegOld::propagate(std::vector<std::vector<real_t>> X) {
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
2023-02-09 17:12:14 +01:00
|
|
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t MLPPProbitRegOld::Evaluate(std::vector<real_t> x) {
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
2023-04-22 14:11:07 +02:00
|
|
|
MLPPActivationOld avn;
|
2023-02-09 17:12:14 +01:00
|
|
|
return avn.gaussianCDF(alg.dot(weights, x) + bias);
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t MLPPProbitRegOld::propagate(std::vector<real_t> x) {
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
2023-02-09 17:12:14 +01:00
|
|
|
return alg.dot(weights, x) + bias;
|
|
|
|
}
|
|
|
|
|
|
|
|
// gaussianCDF ( wTx + b )
|
|
|
|
void MLPPProbitRegOld::forwardPass() {
|
2023-04-22 14:11:07 +02:00
|
|
|
MLPPActivationOld avn;
|
2023-02-09 17:12:14 +01:00
|
|
|
|
|
|
|
z = propagate(inputSet);
|
|
|
|
y_hat = avn.gaussianCDF(z);
|
|
|
|
}
|