mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-09 17:39:37 +01:00
108 lines
4.9 KiB
C
108 lines
4.9 KiB
C
|
|
||
|
#ifndef MLPP_UTILITIES_OLD_H
|
||
|
#define MLPP_UTILITIES_OLD_H
|
||
|
|
||
|
//
|
||
|
// Utilities.hpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 1/16/21.
|
||
|
//
|
||
|
|
||
|
#include "core/containers/vector.h"
|
||
|
#include "core/math/math_defs.h"
|
||
|
#include "core/string/ustring.h"
|
||
|
#include "core/variant/variant.h"
|
||
|
|
||
|
#include "core/object/reference.h"
|
||
|
|
||
|
#include "../lin_alg/mlpp_matrix.h"
|
||
|
#include "../lin_alg/mlpp_vector.h"
|
||
|
|
||
|
#include <string>
|
||
|
#include <tuple>
|
||
|
#include <vector>
|
||
|
|
||
|
class MLPPUtilitiesOld {
|
||
|
|
||
|
public:
|
||
|
// Weight Init
|
||
|
static std::vector<real_t> weightInitialization(int n, std::string type = "Default");
|
||
|
static real_t biasInitialization();
|
||
|
|
||
|
static std::vector<std::vector<real_t>> weightInitialization(int n, int m, std::string type = "Default");
|
||
|
static std::vector<real_t> biasInitialization(int n);
|
||
|
|
||
|
enum WeightDistributionType {
|
||
|
WEIGHT_DISTRIBUTION_TYPE_DEFAULT = 0,
|
||
|
WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL,
|
||
|
WEIGHT_DISTRIBUTION_TYPE_XAVIER_UNIFORM,
|
||
|
WEIGHT_DISTRIBUTION_TYPE_HE_NORMAL,
|
||
|
WEIGHT_DISTRIBUTION_TYPE_HE_UNIFORM,
|
||
|
WEIGHT_DISTRIBUTION_TYPE_LE_CUN_NORMAL,
|
||
|
WEIGHT_DISTRIBUTION_TYPE_LE_CUN_UNIFORM,
|
||
|
WEIGHT_DISTRIBUTION_TYPE_UNIFORM,
|
||
|
};
|
||
|
|
||
|
void weight_initializationv(Ref<MLPPVector> weights, WeightDistributionType type = WEIGHT_DISTRIBUTION_TYPE_DEFAULT);
|
||
|
void weight_initializationm(Ref<MLPPMatrix> weights, WeightDistributionType type = WEIGHT_DISTRIBUTION_TYPE_DEFAULT);
|
||
|
real_t bias_initializationr();
|
||
|
void bias_initializationv(Ref<MLPPVector> z);
|
||
|
|
||
|
// Cost/Performance related Functions
|
||
|
real_t performance(std::vector<real_t> y_hat, std::vector<real_t> y);
|
||
|
real_t performance(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
|
||
|
|
||
|
real_t performance_vec(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set);
|
||
|
real_t performance_mat(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y);
|
||
|
real_t performance_pool_int_array_vec(PoolIntArray y_hat, const Ref<MLPPVector> &output_set);
|
||
|
|
||
|
// Parameter Saving Functions
|
||
|
void saveParameters(std::string fileName, std::vector<real_t> weights, real_t bias, bool app = false, int layer = -1);
|
||
|
void saveParameters(std::string fileName, std::vector<real_t> weights, std::vector<real_t> initial, real_t bias, bool app = false, int layer = -1);
|
||
|
void saveParameters(std::string fileName, std::vector<std::vector<real_t>> weights, std::vector<real_t> bias, bool app = false, int layer = -1);
|
||
|
|
||
|
// Gradient Descent related
|
||
|
static void UI(std::vector<real_t> weights, real_t bias);
|
||
|
static void UI(std::vector<real_t> weights, std::vector<real_t> initial, real_t bias);
|
||
|
static void UI(std::vector<std::vector<real_t>> weights, std::vector<real_t> bias);
|
||
|
|
||
|
static void print_ui_vb(Ref<MLPPVector> weights, real_t bias);
|
||
|
static void print_ui_vib(Ref<MLPPVector> weights, Ref<MLPPVector> initial, real_t bias);
|
||
|
static void print_ui_mb(Ref<MLPPMatrix> weights, Ref<MLPPVector> bias);
|
||
|
|
||
|
static void CostInfo(int epoch, real_t cost_prev, real_t Cost);
|
||
|
static void cost_info(int epoch, real_t cost_prev, real_t cost);
|
||
|
|
||
|
static std::vector<std::vector<std::vector<real_t>>> createMiniBatches(std::vector<std::vector<real_t>> inputSet, int n_mini_batch);
|
||
|
static std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<std::vector<real_t>>> createMiniBatches(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int n_mini_batch);
|
||
|
static std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<std::vector<std::vector<real_t>>>> createMiniBatches(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, int n_mini_batch);
|
||
|
|
||
|
struct CreateMiniBatchMVBatch {
|
||
|
Vector<Ref<MLPPMatrix>> input_sets;
|
||
|
Vector<Ref<MLPPVector>> output_sets;
|
||
|
};
|
||
|
|
||
|
struct CreateMiniBatchMMBatch {
|
||
|
Vector<Ref<MLPPMatrix>> input_sets;
|
||
|
Vector<Ref<MLPPMatrix>> output_sets;
|
||
|
};
|
||
|
|
||
|
static Vector<Ref<MLPPMatrix>> create_mini_batchesm(const Ref<MLPPMatrix> &input_set, int n_mini_batch);
|
||
|
static CreateMiniBatchMVBatch create_mini_batchesmv(const Ref<MLPPMatrix> &input_set, const Ref<MLPPVector> &output_set, int n_mini_batch);
|
||
|
static CreateMiniBatchMMBatch create_mini_batchesmm(const Ref<MLPPMatrix> &input_set, const Ref<MLPPMatrix> &output_set, int n_mini_batch);
|
||
|
|
||
|
Array create_mini_batchesm_bind(const Ref<MLPPMatrix> &input_set, int n_mini_batch);
|
||
|
Array create_mini_batchesmv_bind(const Ref<MLPPMatrix> &input_set, const Ref<MLPPVector> &output_set, int n_mini_batch);
|
||
|
Array create_mini_batchesmm_bind(const Ref<MLPPMatrix> &input_set, const Ref<MLPPMatrix> &output_set, int n_mini_batch);
|
||
|
|
||
|
// F1 score, Precision/Recall, TP, FP, TN, FN, etc.
|
||
|
std::tuple<real_t, real_t, real_t, real_t> TF_PN(std::vector<real_t> y_hat, std::vector<real_t> y); //TF_PN = "True", "False", "Positive", "Negative"
|
||
|
real_t recall(std::vector<real_t> y_hat, std::vector<real_t> y);
|
||
|
real_t precision(std::vector<real_t> y_hat, std::vector<real_t> y);
|
||
|
real_t accuracy(std::vector<real_t> y_hat, std::vector<real_t> y);
|
||
|
real_t f1_score(std::vector<real_t> y_hat, std::vector<real_t> y);
|
||
|
|
||
|
};
|
||
|
|
||
|
#endif /* Utilities_hpp */
|