pmlpp/mlpp/softmax_reg/softmax_reg.h

52 lines
1.4 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_SOFTMAX_REG_H
#define MLPP_SOFTMAX_REG_H
//
// SoftmaxReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include <string>
2023-01-24 19:00:54 +01:00
#include <vector>
2023-01-24 19:20:18 +01:00
class MLPPSoftmaxReg {
2023-01-24 19:00:54 +01:00
public:
MLPPSoftmaxReg(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
2023-01-24 19:00:54 +01:00
std::vector<double> modelTest(std::vector<double> x);
std::vector<std::vector<double>> modelSetTest(std::vector<std::vector<double>> X);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
void SGD(double learning_rate, int max_epoch, bool UI = 1);
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
double score();
void save(std::string fileName);
private:
double Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y);
std::vector<std::vector<double>> Evaluate(std::vector<std::vector<double>> X);
std::vector<double> Evaluate(std::vector<double> x);
void forwardPass();
std::vector<std::vector<double>> inputSet;
std::vector<std::vector<double>> outputSet;
std::vector<std::vector<double>> y_hat;
std::vector<std::vector<double>> weights;
std::vector<double> bias;
int n;
int k;
int n_class;
// Regularization Params
std::string reg;
double lambda;
double alpha; /* This is the controlling param for Elastic Net*/
};
2023-01-24 19:20:18 +01:00
#endif /* SoftmaxReg_hpp */