pmlpp/mlpp/lin_alg/mlpp_tensor3.h

1000 lines
24 KiB
C
Raw Normal View History

#ifndef MLPP_TENSOR3_H
#define MLPP_TENSOR3_H
#include "core/math/math_defs.h"
#include "core/containers/pool_vector.h"
#include "core/containers/sort_array.h"
#include "core/containers/vector.h"
#include "core/error/error_macros.h"
#include "core/math/vector2i.h"
#include "core/os/memory.h"
#include "core/object/reference.h"
#include "mlpp_matrix.h"
#include "mlpp_vector.h"
2023-04-23 13:16:04 +02:00
class Image;
class MLPPTensor3 : public Reference {
GDCLASS(MLPPTensor3, Reference);
public:
real_t *ptrw() {
return _data;
}
const real_t *ptr() const {
return _data;
}
2023-04-24 21:56:07 +02:00
// TODO: Need to double check whether it's right to call the z axis feature map (probably not)
// TODO: Add helper methods for the other axes aswell (probably shouldn't have as extensive of a coverage as z),
// Only MLPPMatrix: get, add, set.
// TODO: Add Image get, set helper methods to MLPPMatrix -> so the other axis helper methods can use them.
// TODO: _FORCE_INLINE_ less big methods (Also do this in MLPPVEctor and MLPPMatrix)
_FORCE_INLINE_ void add_feature_map(const Vector<real_t> &p_row) {
if (p_row.size() == 0) {
return;
}
int fms = feature_map_data_size();
ERR_FAIL_COND(fms != p_row.size());
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_arr = p_row.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
_FORCE_INLINE_ void add_feature_map_pool_vector(const PoolRealArray &p_row) {
if (p_row.size() == 0) {
return;
}
int fms = feature_map_data_size();
ERR_FAIL_COND(fms != p_row.size());
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
PoolRealArray::Read rread = p_row.read();
const real_t *row_arr = rread.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
_FORCE_INLINE_ void add_feature_map_mlpp_vector(const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
int p_row_size = p_row->size();
if (p_row_size == 0) {
return;
}
int fms = feature_map_data_size();
ERR_FAIL_COND(fms != p_row_size);
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < p_row_size; ++i) {
_data[ci + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void add_feature_map_mlpp_matrix(const Ref<MLPPMatrix> &p_matrix) {
ERR_FAIL_COND(!p_matrix.is_valid());
int other_data_size = p_matrix->data_size();
if (other_data_size == 0) {
return;
}
Size2i matrix_size = p_matrix->size();
Size2i fms = feature_map_size();
ERR_FAIL_COND(fms != matrix_size);
int start_offset = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *other_ptr = p_matrix->ptr();
for (int i = 0; i < other_data_size; ++i) {
_data[start_offset + i] = other_ptr[i];
}
}
void remove_feature_map(int p_index) {
ERR_FAIL_INDEX(p_index, _size.z);
--_size.z;
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
int fmds = feature_map_data_size();
for (int i = calculate_feature_map_index(p_index); i < ds; ++i) {
_data[i] = _data[i + fmds];
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
// Removes the item copying the last value into the position of the one to
// remove. It's generally faster than `remove`.
void remove_feature_map_unordered(int p_index) {
ERR_FAIL_INDEX(p_index, _size.z);
--_size.z;
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
int start_ind = calculate_feature_map_index(p_index);
int end_ind = calculate_feature_map_index(p_index + 1);
for (int i = start_ind; i < end_ind; ++i) {
_data[i] = _data[ds + i];
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void swap_feature_map(int p_index_1, int p_index_2) {
ERR_FAIL_INDEX(p_index_1, _size.z);
ERR_FAIL_INDEX(p_index_2, _size.z);
int ind1_start = calculate_feature_map_index(p_index_1);
int ind2_start = calculate_feature_map_index(p_index_2);
int fmds = feature_map_data_size();
for (int i = 0; i < fmds; ++i) {
SWAP(_data[ind1_start + i], _data[ind2_start + i]);
}
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ void clear() { resize(Size3i()); }
_FORCE_INLINE_ void reset() {
if (_data) {
memfree(_data);
_data = NULL;
2023-04-16 20:28:50 +02:00
_size = Size3i();
}
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ bool empty() const { return _size == Size3i(); }
_FORCE_INLINE_ int feature_map_data_size() const { return _size.x * _size.y; }
_FORCE_INLINE_ Size2i feature_map_size() const { return Size2i(_size.x, _size.y); }
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ int data_size() const { return _size.x * _size.y * _size.z; }
_FORCE_INLINE_ Size3i size() const { return _size; }
2023-04-16 20:28:50 +02:00
void resize(const Size3i &p_size) {
_size = p_size;
int ds = data_size();
if (ds == 0) {
if (_data) {
memfree(_data);
_data = NULL;
}
return;
}
_data = (real_t *)memrealloc(_data, ds * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
2023-04-23 11:46:35 +02:00
void set_shape(const Size3i &p_size) {
int ds = data_size();
int new_data_size = p_size.x * p_size.y * p_size.z;
ERR_FAIL_COND_MSG(ds != new_data_size, "The new size has a different volume than the old. If this is intended use resize()!");
_size = p_size;
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ int calculate_index(int p_index_y, int p_index_x, int p_index_z) const {
return p_index_y * _size.x + p_index_x + _size.x * _size.y * p_index_z;
}
_FORCE_INLINE_ int calculate_feature_map_index(int p_index_z) const {
return _size.x * _size.y * p_index_z;
}
_FORCE_INLINE_ const real_t &operator[](int p_index) const {
CRASH_BAD_INDEX(p_index, data_size());
return _data[p_index];
}
_FORCE_INLINE_ real_t &operator[](int p_index) {
CRASH_BAD_INDEX(p_index, data_size());
return _data[p_index];
}
_FORCE_INLINE_ real_t get_element_index(int p_index) const {
ERR_FAIL_INDEX_V(p_index, data_size(), 0);
return _data[p_index];
}
_FORCE_INLINE_ void set_element_index(int p_index, real_t p_val) {
ERR_FAIL_INDEX(p_index, data_size());
_data[p_index] = p_val;
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ real_t get_element(int p_index_y, int p_index_x, int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_x, _size.x, 0);
ERR_FAIL_INDEX_V(p_index_y, _size.y, 0);
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX_V(p_index_z, _size.z, 0);
2023-04-16 20:28:50 +02:00
return _data[p_index_y * _size.x + p_index_x + _size.x * _size.y * p_index_z];
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ void set_element(int p_index_y, int p_index_x, int p_index_z, real_t p_val) {
ERR_FAIL_INDEX(p_index_x, _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX(p_index_z, _size.z);
2023-04-16 20:28:50 +02:00
_data[p_index_y * _size.x + p_index_x + _size.x * _size.y * p_index_z] = p_val;
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ Vector<real_t> get_row_vector(int p_index_y, int p_index_z) {
ERR_FAIL_INDEX_V(p_index_y, _size.y, Vector<real_t>());
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector<real_t>());
Vector<real_t> ret;
if (unlikely(_size.x == 0)) {
return ret;
}
ret.resize(_size.x);
int ind_start = p_index_y * _size.x;
real_t *row_ptr = ret.ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
2023-04-16 16:05:50 +02:00
return ret;
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ PoolRealArray get_row_pool_vector(int p_index_y, int p_index_z) {
ERR_FAIL_INDEX_V(p_index_y, _size.y, PoolRealArray());
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray());
PoolRealArray ret;
if (unlikely(_size.x == 0)) {
return ret;
}
ret.resize(_size.x);
2023-04-16 20:28:50 +02:00
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
PoolRealArray::Write w = ret.write();
real_t *row_ptr = w.ptr();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ Ref<MLPPVector> get_row_mlpp_vector(int p_index_y, int p_index_z) {
ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref<MLPPVector>());
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPVector>());
Ref<MLPPVector> ret;
ret.instance();
if (unlikely(_size.x == 0)) {
return ret;
}
ret->resize(_size.x);
2023-04-16 20:28:50 +02:00
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ void get_row_into_mlpp_vector(int p_index_y, int p_index_z, Ref<MLPPVector> target) const {
ERR_FAIL_COND(!target.is_valid());
ERR_FAIL_INDEX(p_index_y, _size.y);
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX(p_index_z, _size.z);
if (unlikely(target->size() != _size.x)) {
target->resize(_size.x);
}
2023-04-16 20:28:50 +02:00
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
real_t *row_ptr = target->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ void set_row_vector(int p_index_y, int p_index_z, const Vector<real_t> &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX(p_index_z, _size.z);
2023-04-16 20:28:50 +02:00
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
const real_t *row_ptr = p_row.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ void set_row_pool_vector(int p_index_y, int p_index_z, const PoolRealArray &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX(p_index_z, _size.z);
2023-04-16 20:28:50 +02:00
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
PoolRealArray::Read r = p_row.read();
const real_t *row_ptr = r.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
2023-04-16 20:28:50 +02:00
_FORCE_INLINE_ void set_row_mlpp_vector(int p_index_y, int p_index_z, const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
ERR_FAIL_COND(p_row->size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
2023-04-16 20:28:50 +02:00
ERR_FAIL_INDEX(p_index_z, _size.z);
2023-04-16 20:28:50 +02:00
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ Vector<real_t> get_feature_map_vector(int p_index_z) {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector<real_t>());
Vector<real_t> ret;
int fmds = feature_map_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret.resize(fmds);
int ind_start = calculate_feature_map_index(p_index_z);
real_t *row_ptr = ret.ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ PoolRealArray get_feature_map_pool_vector(int p_index_z) {
ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray());
PoolRealArray ret;
int fmds = feature_map_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret.resize(fmds);
int ind_start = calculate_feature_map_index(p_index_z);
PoolRealArray::Write w = ret.write();
real_t *row_ptr = w.ptr();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ Ref<MLPPVector> get_feature_map_mlpp_vector(int p_index_z) {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPVector>());
Ref<MLPPVector> ret;
ret.instance();
int fmds = feature_map_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret->resize(fmds);
int ind_start = calculate_feature_map_index(p_index_z);
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ void get_feature_map_into_mlpp_vector(int p_index_z, Ref<MLPPVector> target) const {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = feature_map_data_size();
if (unlikely(target->size() != fmds)) {
target->resize(fmds);
}
int ind_start = calculate_feature_map_index(p_index_z);
real_t *row_ptr = target->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
_FORCE_INLINE_ Ref<MLPPMatrix> get_feature_map_mlpp_matrix(int p_index_z) {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPMatrix>());
Ref<MLPPMatrix> ret;
ret.instance();
int fmds = feature_map_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret->resize(feature_map_size());
int ind_start = calculate_feature_map_index(p_index_z);
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
2023-04-23 15:39:21 +02:00
_FORCE_INLINE_ void get_feature_map_into_mlpp_matrix(int p_index_z, Ref<MLPPMatrix> target) const {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = feature_map_data_size();
Size2i fms = feature_map_size();
if (unlikely(target->size() != fms)) {
target->resize(fms);
}
int ind_start = calculate_feature_map_index(p_index_z);
real_t *row_ptr = target->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
_FORCE_INLINE_ void set_feature_map_vector(int p_index_z, const Vector<real_t> &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = feature_map_data_size();
ERR_FAIL_COND(p_row.size() != fmds);
int ind_start = calculate_feature_map_index(p_index_z);
const real_t *row_ptr = p_row.ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_feature_map_pool_vector(int p_index_z, const PoolRealArray &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = feature_map_data_size();
ERR_FAIL_COND(p_row.size() != fmds);
int ind_start = calculate_feature_map_index(p_index_z);
PoolRealArray::Read r = p_row.read();
const real_t *row_ptr = r.ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_feature_map_mlpp_vector(int p_index_z, const Ref<MLPPVector> &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
ERR_FAIL_COND(!p_row.is_valid());
int fmds = feature_map_data_size();
ERR_FAIL_COND(p_row->size() != fmds);
int ind_start = calculate_feature_map_index(p_index_z);
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_feature_map_mlpp_matrix(int p_index_z, const Ref<MLPPMatrix> &p_mat) {
ERR_FAIL_INDEX(p_index_z, _size.z);
ERR_FAIL_COND(!p_mat.is_valid());
int fmds = feature_map_data_size();
ERR_FAIL_COND(p_mat->size() != feature_map_size());
int ind_start = calculate_feature_map_index(p_index_z);
const real_t *row_ptr = p_mat->ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
2023-04-23 13:16:04 +02:00
public:
//Image api
enum ImageChannelFlags {
IMAGE_CHANNEL_FLAG_R = 1 << 0,
IMAGE_CHANNEL_FLAG_G = 1 << 1,
IMAGE_CHANNEL_FLAG_B = 1 << 2,
IMAGE_CHANNEL_FLAG_A = 1 << 3,
IMAGE_CHANNEL_FLAG_NONE = 0,
IMAGE_CHANNEL_FLAG_RG = IMAGE_CHANNEL_FLAG_R | IMAGE_CHANNEL_FLAG_G,
IMAGE_CHANNEL_FLAG_RGB = IMAGE_CHANNEL_FLAG_R | IMAGE_CHANNEL_FLAG_G | IMAGE_CHANNEL_FLAG_B,
IMAGE_CHANNEL_FLAG_GB = IMAGE_CHANNEL_FLAG_G | IMAGE_CHANNEL_FLAG_B,
IMAGE_CHANNEL_FLAG_GBA = IMAGE_CHANNEL_FLAG_G | IMAGE_CHANNEL_FLAG_B | IMAGE_CHANNEL_FLAG_A,
IMAGE_CHANNEL_FLAG_BA = IMAGE_CHANNEL_FLAG_B | IMAGE_CHANNEL_FLAG_A,
IMAGE_CHANNEL_FLAG_RGBA = IMAGE_CHANNEL_FLAG_R | IMAGE_CHANNEL_FLAG_G | IMAGE_CHANNEL_FLAG_B | IMAGE_CHANNEL_FLAG_A,
2023-04-23 13:16:04 +02:00
};
void add_feature_maps_image(const Ref<Image> &p_img, const int p_channels = IMAGE_CHANNEL_FLAG_RGBA);
2023-04-23 13:16:04 +02:00
Ref<Image> get_feature_map_image(const int p_index_z);
Ref<Image> get_feature_maps_image(const int p_index_r = -1, const int p_index_g = -1, const int p_index_b = -1, const int p_index_a = -1);
void get_feature_map_into_image(Ref<Image> p_target, const int p_index_z, const int p_target_channels = IMAGE_CHANNEL_FLAG_RGB) const;
2023-04-23 14:48:44 +02:00
void get_feature_maps_into_image(Ref<Image> p_target, const int p_index_r = -1, const int p_index_g = -1, const int p_index_b = -1, const int p_index_a = -1) const;
2023-04-23 13:16:04 +02:00
void set_feature_map_image(const Ref<Image> &p_img, const int p_index_z, const int p_image_channel_flag = IMAGE_CHANNEL_FLAG_R);
2023-04-23 13:16:04 +02:00
void set_feature_maps_image(const Ref<Image> &p_img, const int p_index_r = -1, const int p_index_g = -1, const int p_index_b = -1, const int p_index_a = -1);
void set_from_image(const Ref<Image> &p_img, const int p_channels = IMAGE_CHANNEL_FLAG_RGBA);
2023-04-23 13:16:04 +02:00
public:
//math api
//Vector<Ref<MLPPMatrix>> additionnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
//Vector<Ref<MLPPMatrix>> element_wise_divisionnvnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
//Vector<Ref<MLPPMatrix>> sqrtnvt(const Vector<Ref<MLPPMatrix>> &A);
//Vector<Ref<MLPPMatrix>> exponentiatenvt(const Vector<Ref<MLPPMatrix>> &A, real_t p);
//std::vector<std::vector<real_t>> tensor_vec_mult(std::vector<std::vector<std::vector<real_t>>> A, std::vector<real_t> b);
//std::vector<real_t> flatten(std::vector<std::vector<std::vector<real_t>>> A);
//Vector<Ref<MLPPMatrix>> scalar_multiplynvt(real_t scalar, Vector<Ref<MLPPMatrix>> A);
//Vector<Ref<MLPPMatrix>> scalar_addnvt(real_t scalar, Vector<Ref<MLPPMatrix>> A);
//Vector<Ref<MLPPMatrix>> resizenvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
//std::vector<std::vector<std::vector<real_t>>> hadamard_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<std::vector<real_t>>> B);
//Vector<Ref<MLPPMatrix>> maxnvt(const Vector<Ref<MLPPMatrix>> &A, const Vector<Ref<MLPPMatrix>> &B);
//Vector<Ref<MLPPMatrix>> absnvt(const Vector<Ref<MLPPMatrix>> &A);
//real_t norm_2(std::vector<std::vector<std::vector<real_t>>> A);
//std::vector<std::vector<std::vector<real_t>>> vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B);
2023-04-23 13:16:04 +02:00
public:
void fill(real_t p_val) {
if (!_data) {
return;
}
int ds = data_size();
for (int i = 0; i < ds; ++i) {
_data[i] = p_val;
}
}
Vector<real_t> to_flat_vector() const {
Vector<real_t> ret;
ret.resize(data_size());
real_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
PoolRealArray to_flat_pool_vector() const {
PoolRealArray pl;
if (data_size()) {
pl.resize(data_size());
typename PoolRealArray::Write w = pl.write();
real_t *dest = w.ptr();
for (int i = 0; i < data_size(); ++i) {
dest[i] = static_cast<real_t>(_data[i]);
}
}
return pl;
}
Vector<uint8_t> to_flat_byte_array() const {
Vector<uint8_t> ret;
ret.resize(data_size() * sizeof(real_t));
uint8_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
2023-04-23 12:15:56 +02:00
Ref<MLPPTensor3> duplicate() const {
Ref<MLPPTensor3> ret;
ret.instance();
2023-04-23 12:15:56 +02:00
ret->set_from_mlpp_tensor3r(*this);
return ret;
}
2023-04-23 12:15:56 +02:00
_FORCE_INLINE_ void set_from_mlpp_tensor3(const Ref<MLPPTensor3> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
resize(p_from->size());
int ds = p_from->data_size();
const real_t *ptr = p_from->ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_tensor3r(const MLPPTensor3 &p_from) {
resize(p_from.size());
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_matrix(const Ref<MLPPMatrix> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
2023-04-16 20:28:50 +02:00
Size2i mat_size = p_from->size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from->data_size();
const real_t *ptr = p_from->ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_matrixr(const MLPPMatrix &p_from) {
2023-04-16 20:28:50 +02:00
Size2i mat_size = p_from.size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_vectors(const Vector<Ref<MLPPVector>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
if (!p_from[0].is_valid()) {
reset();
return;
}
2023-04-16 20:28:50 +02:00
resize(Size3i(p_from[0]->size(), p_from.size(), 1));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
const Ref<MLPPVector> &r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
2023-04-23 12:15:56 +02:00
_FORCE_INLINE_ void set_from_mlpp_matricess(const Vector<Ref<MLPPMatrix>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
2023-04-23 12:15:56 +02:00
if (!p_from[0].is_valid()) {
reset();
return;
}
2023-04-23 12:15:56 +02:00
resize(Size3i(p_from[0]->size().x, p_from[0]->size().y, p_from.size()));
if (data_size() == 0) {
reset();
return;
}
2023-04-23 12:15:56 +02:00
Size2i fms = feature_map_size();
int fmds = feature_map_data_size();
for (int i = 0; i < p_from.size(); ++i) {
2023-04-23 12:15:56 +02:00
const Ref<MLPPMatrix> &r = p_from[i];
ERR_CONTINUE(!r.is_valid());
2023-04-23 12:15:56 +02:00
ERR_CONTINUE(r->size() != fms);
2023-04-23 12:15:56 +02:00
int start_index = calculate_feature_map_index(i);
const real_t *from_ptr = r->ptr();
2023-04-23 12:15:56 +02:00
for (int j = 0; j < fmds; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
2023-04-23 12:15:56 +02:00
_FORCE_INLINE_ void set_from_mlpp_vectors_array(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
2023-04-23 12:15:56 +02:00
Ref<MLPPVector> v0 = p_from[0];
if (!v0.is_valid()) {
reset();
return;
}
resize(Size3i(v0->size(), p_from.size(), 1));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
2023-04-23 12:15:56 +02:00
Ref<MLPPVector> r = p_from[i];
2023-04-23 12:15:56 +02:00
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
2023-04-23 12:15:56 +02:00
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
2023-04-23 12:15:56 +02:00
_FORCE_INLINE_ void set_from_mlpp_matrices_array(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
2023-04-23 12:15:56 +02:00
Ref<MLPPMatrix> v0 = p_from[0];
2023-04-23 12:15:56 +02:00
if (!v0.is_valid()) {
reset();
return;
}
resize(Size3i(v0->size().x, v0->size().y, p_from.size()));
if (data_size() == 0) {
reset();
return;
}
2023-04-23 12:15:56 +02:00
Size2i fms = feature_map_size();
int fmds = feature_map_data_size();
for (int i = 0; i < p_from.size(); ++i) {
2023-04-23 12:15:56 +02:00
Ref<MLPPMatrix> r = p_from[i];
2023-04-23 12:15:56 +02:00
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != fms);
2023-04-23 12:15:56 +02:00
int start_index = calculate_feature_map_index(i);
2023-04-23 12:15:56 +02:00
const real_t *from_ptr = r->ptr();
for (int j = 0; j < fmds; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
_FORCE_INLINE_ bool is_equal_approx(const Ref<MLPPTensor3> &p_with, real_t tolerance = static_cast<real_t>(CMP_EPSILON)) const {
ERR_FAIL_COND_V(!p_with.is_valid(), false);
if (unlikely(this == p_with.ptr())) {
return true;
}
if (_size != p_with->size()) {
return false;
}
int ds = data_size();
for (int i = 0; i < ds; ++i) {
if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) {
return false;
}
}
return true;
}
2023-04-16 20:28:50 +02:00
String to_string();
_FORCE_INLINE_ MLPPTensor3() {
_data = NULL;
}
_FORCE_INLINE_ MLPPTensor3(const MLPPMatrix &p_from) {
_data = NULL;
2023-04-16 20:28:50 +02:00
Size2i mat_size = p_from.size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
MLPPTensor3(const Array &p_from) {
_data = NULL;
2023-04-23 12:15:56 +02:00
set_from_mlpp_matrices_array(p_from);
}
_FORCE_INLINE_ ~MLPPTensor3() {
if (_data) {
reset();
}
}
// TODO: These are temporary
std::vector<real_t> to_flat_std_vector() const;
2023-04-16 20:28:50 +02:00
void set_from_std_vectors(const std::vector<std::vector<std::vector<real_t>>> &p_from);
std::vector<std::vector<std::vector<real_t>>> to_std_vector();
MLPPTensor3(const std::vector<std::vector<std::vector<real_t>>> &p_from);
protected:
static void _bind_methods();
protected:
2023-04-16 20:28:50 +02:00
Size3i _size;
real_t *_data;
};
VARIANT_ENUM_CAST(MLPPTensor3::ImageChannelFlags);
2023-04-23 13:16:04 +02:00
#endif