mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-06 17:09:36 +01:00
60 lines
3.0 KiB
C
60 lines
3.0 KiB
C
|
|
||
|
#ifndef MLPP_NUMERICAL_ANALYSIS_OLD_H
|
||
|
#define MLPP_NUMERICAL_ANALYSIS_OLD_H
|
||
|
|
||
|
//
|
||
|
// NumericalAnalysis.hpp
|
||
|
//
|
||
|
//
|
||
|
|
||
|
#include "core/math/math_defs.h"
|
||
|
|
||
|
#include "core/object/reference.h"
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
class MLPPNumericalAnalysisOld {
|
||
|
public:
|
||
|
/* A numerical method for derivatives is used. This may be subject to change,
|
||
|
as an analytical method for calculating derivatives will most likely be used in
|
||
|
the future.
|
||
|
*/
|
||
|
real_t numDiff(real_t (*function)(real_t), real_t x);
|
||
|
real_t numDiff_2(real_t (*function)(real_t), real_t x);
|
||
|
real_t numDiff_3(real_t (*function)(real_t), real_t x);
|
||
|
|
||
|
real_t constantApproximation(real_t (*function)(real_t), real_t c);
|
||
|
real_t linearApproximation(real_t (*function)(real_t), real_t c, real_t x);
|
||
|
real_t quadraticApproximation(real_t (*function)(real_t), real_t c, real_t x);
|
||
|
real_t cubicApproximation(real_t (*function)(real_t), real_t c, real_t x);
|
||
|
|
||
|
real_t numDiff(real_t (*function)(std::vector<real_t>), std::vector<real_t> x, int axis);
|
||
|
real_t numDiff_2(real_t (*function)(std::vector<real_t>), std::vector<real_t> x, int axis1, int axis2);
|
||
|
real_t numDiff_3(real_t (*function)(std::vector<real_t>), std::vector<real_t> x, int axis1, int axis2, int axis3);
|
||
|
|
||
|
real_t newtonRaphsonMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num);
|
||
|
real_t halleyMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num);
|
||
|
real_t invQuadraticInterpolation(real_t (*function)(real_t), std::vector<real_t> x_0, int epoch_num);
|
||
|
|
||
|
real_t eulerianMethod(real_t (*derivative)(real_t), std::vector<real_t> q_0, real_t p, real_t h); // Euler's method for solving diffrential equations.
|
||
|
real_t eulerianMethod(real_t (*derivative)(std::vector<real_t>), std::vector<real_t> q_0, real_t p, real_t h); // Euler's method for solving diffrential equations.
|
||
|
|
||
|
real_t growthMethod(real_t C, real_t k, real_t t); // General growth-based diffrential equations can be solved by seperation of variables.
|
||
|
|
||
|
std::vector<real_t> jacobian(real_t (*function)(std::vector<real_t>), std::vector<real_t> x); // Indeed, for functions with scalar outputs the Jacobians will be vectors.
|
||
|
std::vector<std::vector<real_t>> hessian(real_t (*function)(std::vector<real_t>), std::vector<real_t> x);
|
||
|
std::vector<std::vector<std::vector<real_t>>> thirdOrderTensor(real_t (*function)(std::vector<real_t>), std::vector<real_t> x);
|
||
|
|
||
|
real_t constantApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c);
|
||
|
real_t linearApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x);
|
||
|
real_t quadraticApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x);
|
||
|
real_t cubicApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x);
|
||
|
|
||
|
real_t laplacian(real_t (*function)(std::vector<real_t>), std::vector<real_t> x); // laplacian
|
||
|
|
||
|
std::string secondPartialDerivativeTest(real_t (*function)(std::vector<real_t>), std::vector<real_t> x);
|
||
|
};
|
||
|
|
||
|
#endif /* NumericalAnalysis_hpp */
|