pmlpp/mlpp/log_reg/log_reg.h

55 lines
1.4 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_LOG_REG_H
#define MLPP_LOG_REG_H
//
// LogReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
#include <string>
2023-01-24 19:00:54 +01:00
#include <vector>
2023-01-24 19:20:18 +01:00
2023-01-25 00:54:50 +01:00
class MLPPLogReg {
2023-01-24 19:00:54 +01:00
public:
2023-01-27 13:01:16 +01:00
MLPPLogReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
void MLE(real_t learning_rate, int max_epoch, bool UI = 1);
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
real_t score();
2023-01-24 19:00:54 +01:00
void save(std::string fileName);
private:
2023-01-27 13:01:16 +01:00
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
2023-01-24 19:00:54 +01:00
2023-01-27 13:01:16 +01:00
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
2023-01-24 19:00:54 +01:00
void forwardPass();
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
std::vector<real_t> weights;
real_t bias;
2023-01-24 19:00:54 +01:00
int n;
int k;
2023-01-27 13:01:16 +01:00
real_t learning_rate;
2023-01-24 19:00:54 +01:00
// Regularization Params
std::string reg;
2023-01-27 13:01:16 +01:00
real_t lambda; /* Regularization Parameter */
real_t alpha; /* This is the controlling param for Elastic Net*/
2023-01-24 19:00:54 +01:00
};
2023-01-24 19:20:18 +01:00
#endif /* LogReg_hpp */