mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-10 17:49:36 +01:00
59 lines
1.6 KiB
C++
59 lines
1.6 KiB
C++
|
//
|
||
|
// Transforms.cpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 11/13/20.
|
||
|
//
|
||
|
|
||
|
#include "Transforms.hpp"
|
||
|
#include "LinAlg/LinAlg.hpp"
|
||
|
#include <iostream>
|
||
|
#include <string>
|
||
|
#include <cmath>
|
||
|
|
||
|
namespace MLPP{
|
||
|
|
||
|
// DCT ii.
|
||
|
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
|
||
|
std::vector<std::vector<double>> Transforms::discreteCosineTransform(std::vector<std::vector<double>> A){
|
||
|
LinAlg alg;
|
||
|
A = alg.scalarAdd(-128, A); // Center around 0.
|
||
|
|
||
|
std::vector<std::vector<double>> B;
|
||
|
B.resize(A.size());
|
||
|
for(int i = 0; i < B.size(); i++){
|
||
|
B[i].resize(A[i].size());
|
||
|
}
|
||
|
|
||
|
int M = A.size();
|
||
|
|
||
|
for(int i = 0; i < B.size(); i++){
|
||
|
for(int j = 0; j < B[i].size(); j++){
|
||
|
double sum = 0;
|
||
|
double alphaI;
|
||
|
if(i == 0){
|
||
|
alphaI = 1/std::sqrt(M);
|
||
|
}
|
||
|
else{
|
||
|
alphaI = std::sqrt(double(2)/double(M));
|
||
|
}
|
||
|
double alphaJ;
|
||
|
if(j == 0){
|
||
|
alphaJ = 1/std::sqrt(M);
|
||
|
}
|
||
|
else{
|
||
|
alphaJ = std::sqrt(double(2)/double(M));
|
||
|
}
|
||
|
|
||
|
for(int k = 0; k < B.size(); k++){
|
||
|
for(int f = 0; f < B[k].size(); f++){
|
||
|
sum += A[k][f] * std::cos( (M_PI * i * (2 * k + 1)) / (2 * M)) * std::cos( (M_PI * j * (2 * f + 1)) / (2 * M));
|
||
|
}
|
||
|
}
|
||
|
B[i][j] = sum;
|
||
|
B[i][j] *= alphaI * alphaJ;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
return B;
|
||
|
}
|
||
|
}
|