mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-25 15:59:19 +01:00
219 lines
7.4 KiB
C++
219 lines
7.4 KiB
C++
|
//
|
||
|
// CLogLogReg.cpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 10/2/20.
|
||
|
//
|
||
|
|
||
|
#include "CLogLogReg.hpp"
|
||
|
#include "Activation/Activation.hpp"
|
||
|
#include "LinAlg/LinAlg.hpp"
|
||
|
#include "Regularization/Reg.hpp"
|
||
|
#include "Utilities/Utilities.hpp"
|
||
|
#include "Cost/Cost.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <random>
|
||
|
|
||
|
namespace MLPP{
|
||
|
CLogLogReg::CLogLogReg(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, std::string reg, double lambda, double alpha)
|
||
|
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha)
|
||
|
{
|
||
|
y_hat.resize(n);
|
||
|
weights = Utilities::weightInitialization(k);
|
||
|
bias = Utilities::biasInitialization();
|
||
|
}
|
||
|
|
||
|
std::vector<double> CLogLogReg::modelSetTest(std::vector<std::vector<double>> X){
|
||
|
return Evaluate(X);
|
||
|
}
|
||
|
|
||
|
double CLogLogReg::modelTest(std::vector<double> x){
|
||
|
return Evaluate(x);
|
||
|
}
|
||
|
|
||
|
void CLogLogReg::gradientDescent(double learning_rate, int max_epoch, bool UI){
|
||
|
Activation avn;
|
||
|
LinAlg alg;
|
||
|
Reg regularization;
|
||
|
double cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
forwardPass();
|
||
|
|
||
|
while(true){
|
||
|
cost_prev = Cost(y_hat, outputSet);
|
||
|
|
||
|
std::vector<double> error = alg.subtraction(y_hat, outputSet);
|
||
|
|
||
|
|
||
|
// Calculating the weight gradients
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1)))));
|
||
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
||
|
|
||
|
// Calculating the bias gradients
|
||
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
|
||
|
|
||
|
forwardPass();
|
||
|
|
||
|
if(UI) {
|
||
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
||
|
Utilities::UI(weights, bias);
|
||
|
}
|
||
|
epoch++;
|
||
|
|
||
|
if(epoch > max_epoch) { break; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CLogLogReg::MLE(double learning_rate, int max_epoch, bool UI){
|
||
|
Activation avn;
|
||
|
LinAlg alg;
|
||
|
Reg regularization;
|
||
|
double cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
forwardPass();
|
||
|
|
||
|
while(true){
|
||
|
cost_prev = Cost(y_hat, outputSet);
|
||
|
|
||
|
std::vector<double> error = alg.subtraction(y_hat, outputSet);
|
||
|
|
||
|
weights = alg.addition(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1)))));
|
||
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
||
|
|
||
|
// Calculating the bias gradients
|
||
|
bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
|
||
|
forwardPass();
|
||
|
|
||
|
if(UI) {
|
||
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
||
|
Utilities::UI(weights, bias);
|
||
|
}
|
||
|
epoch++;
|
||
|
|
||
|
if(epoch > max_epoch) { break; }
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CLogLogReg::SGD(double learning_rate, int max_epoch, bool UI){
|
||
|
LinAlg alg;
|
||
|
Reg regularization;
|
||
|
double cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
forwardPass();
|
||
|
|
||
|
while(true){
|
||
|
std::random_device rd;
|
||
|
std::default_random_engine generator(rd());
|
||
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||
|
int outputIndex = distribution(generator);
|
||
|
|
||
|
double y_hat = Evaluate(inputSet[outputIndex]);
|
||
|
double z = propagate(inputSet[outputIndex]);
|
||
|
cost_prev = Cost({y_hat}, {outputSet[outputIndex]});
|
||
|
|
||
|
double error = y_hat - outputSet[outputIndex];
|
||
|
|
||
|
// Weight Updation
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * exp(z-exp(z)), inputSet[outputIndex]));
|
||
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
||
|
|
||
|
// Bias updation
|
||
|
bias -= learning_rate * error * exp(z-exp(z));
|
||
|
|
||
|
y_hat = Evaluate({inputSet[outputIndex]});
|
||
|
|
||
|
if(UI) {
|
||
|
Utilities::CostInfo(epoch, cost_prev, Cost({y_hat}, {outputSet[outputIndex]}));
|
||
|
Utilities::UI(weights, bias);
|
||
|
}
|
||
|
epoch++;
|
||
|
|
||
|
if(epoch > max_epoch) { break; }
|
||
|
}
|
||
|
forwardPass();
|
||
|
}
|
||
|
|
||
|
void CLogLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
|
||
|
Activation avn;
|
||
|
LinAlg alg;
|
||
|
Reg regularization;
|
||
|
double cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
|
||
|
// Creating the mini-batches
|
||
|
int n_mini_batch = n/mini_batch_size;
|
||
|
auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||
|
|
||
|
while(true){
|
||
|
for(int i = 0; i < n_mini_batch; i++){
|
||
|
std::vector<double> y_hat = Evaluate(inputMiniBatches[i]);
|
||
|
std::vector<double> z = propagate(inputMiniBatches[i]);
|
||
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||
|
|
||
|
std::vector<double> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
||
|
|
||
|
// Calculating the weight gradients
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.cloglog(z, 1)))));
|
||
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
||
|
|
||
|
// Calculating the bias gradients
|
||
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
|
||
|
|
||
|
forwardPass();
|
||
|
|
||
|
y_hat = Evaluate(inputMiniBatches[i]);
|
||
|
|
||
|
if(UI) {
|
||
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
||
|
Utilities::UI(weights, bias);
|
||
|
}
|
||
|
}
|
||
|
epoch++;
|
||
|
if(epoch > max_epoch) { break; }
|
||
|
}
|
||
|
forwardPass();
|
||
|
}
|
||
|
|
||
|
double CLogLogReg::score(){
|
||
|
Utilities util;
|
||
|
return util.performance(y_hat, outputSet);
|
||
|
}
|
||
|
|
||
|
double CLogLogReg::Cost(std::vector <double> y_hat, std::vector<double> y){
|
||
|
Reg regularization;
|
||
|
class Cost cost;
|
||
|
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
|
||
|
}
|
||
|
|
||
|
std::vector<double> CLogLogReg::Evaluate(std::vector<std::vector<double>> X){
|
||
|
LinAlg alg;
|
||
|
Activation avn;
|
||
|
return avn.cloglog(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
||
|
}
|
||
|
|
||
|
std::vector<double>CLogLogReg::propagate(std::vector<std::vector<double>> X){
|
||
|
LinAlg alg;
|
||
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
||
|
}
|
||
|
|
||
|
double CLogLogReg::Evaluate(std::vector<double> x){
|
||
|
LinAlg alg;
|
||
|
Activation avn;
|
||
|
return avn.cloglog(alg.dot(weights, x) + bias);
|
||
|
}
|
||
|
|
||
|
double CLogLogReg::propagate(std::vector<double> x){
|
||
|
LinAlg alg;
|
||
|
return alg.dot(weights, x) + bias;
|
||
|
}
|
||
|
|
||
|
// cloglog ( wTx + b )
|
||
|
void CLogLogReg::forwardPass(){
|
||
|
LinAlg alg;
|
||
|
Activation avn;
|
||
|
|
||
|
z = propagate(inputSet);
|
||
|
y_hat = avn.cloglog(z);
|
||
|
}
|
||
|
}
|