pmlpp/MLPP/AutoEncoder/AutoEncoder.hpp

55 lines
1.8 KiB
C++
Raw Normal View History

//
// AutoEncoder.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#ifndef AutoEncoder_hpp
#define AutoEncoder_hpp
#include <vector>
#include <tuple>
#include <string>
namespace MLPP {
class AutoEncoder{
public:
AutoEncoder(std::vector<std::vector<double>> inputSet, int n_hidden);
std::vector<std::vector<double>> modelSetTest(std::vector<std::vector<double>> X);
std::vector<double> modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
void SGD(double learning_rate, int max_epoch, bool UI = 1);
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
double score();
void save(std::string fileName);
private:
double Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y);
std::vector<std::vector<double>> Evaluate(std::vector<std::vector<double>> X);
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>> propagate(std::vector<std::vector<double>> X);
std::vector<double> Evaluate(std::vector<double> x);
std::tuple<std::vector<double>, std::vector<double>> propagate(std::vector<double> x);
void forwardPass();
std::vector<std::vector<double>> inputSet;
std::vector<std::vector<double>> y_hat;
std::vector<std::vector<double>> weights1;
std::vector<std::vector<double>> weights2;
std::vector<double> bias1;
std::vector<double> bias2;
std::vector<std::vector<double>> z2;
std::vector<std::vector<double>> a2;
int n;
int k;
int n_hidden;
};
}
#endif /* AutoEncoder_hpp */