2023-01-24 18:52:45 +01:00
|
|
|
#ifndef MLPP_CONVOLUTIONS_H
|
|
|
|
#define MLPP_CONVOLUTIONS_H
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-12-30 00:41:59 +01:00
|
|
|
/*************************************************************************/
|
|
|
|
/* convolutions.h */
|
|
|
|
/*************************************************************************/
|
|
|
|
/* This file is part of: */
|
|
|
|
/* PMLPP Machine Learning Library */
|
|
|
|
/* https://github.com/Relintai/pmlpp */
|
|
|
|
/*************************************************************************/
|
2023-12-30 00:43:39 +01:00
|
|
|
/* Copyright (c) 2023-present Péter Magyar. */
|
2023-12-30 00:41:59 +01:00
|
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
|
|
/* */
|
|
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
|
|
/* a copy of this software and associated documentation files (the */
|
|
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
|
|
/* the following conditions: */
|
|
|
|
/* */
|
|
|
|
/* The above copyright notice and this permission notice shall be */
|
|
|
|
/* included in all copies or substantial portions of the Software. */
|
|
|
|
/* */
|
|
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
/*************************************************************************/
|
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
#include "core/containers/vector.h"
|
|
|
|
#include "core/string/ustring.h"
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-27 13:01:16 +01:00
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
#include "../lin_alg/mlpp_matrix.h"
|
|
|
|
#include "../lin_alg/mlpp_tensor3.h"
|
|
|
|
#include "../lin_alg/mlpp_vector.h"
|
|
|
|
|
2023-02-12 18:20:53 +01:00
|
|
|
#include "core/object/reference.h"
|
|
|
|
|
|
|
|
class MLPPConvolutions : public Reference {
|
|
|
|
GDCLASS(MLPPConvolutions, Reference);
|
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
public:
|
2023-12-28 14:41:45 +01:00
|
|
|
enum PoolType {
|
|
|
|
POOL_TYPE_AVERAGE = 0,
|
|
|
|
POOL_TYPE_MIN,
|
|
|
|
POOL_TYPE_MAX,
|
|
|
|
};
|
|
|
|
|
|
|
|
Ref<MLPPMatrix> convolve_2d(const Ref<MLPPMatrix> &input, const Ref<MLPPMatrix> &filter, const int S, const int P = 0);
|
|
|
|
Ref<MLPPTensor3> convolve_3d(const Ref<MLPPTensor3> &input, const Ref<MLPPTensor3> &filter, const int S, const int P = 0);
|
|
|
|
|
|
|
|
Ref<MLPPMatrix> pool_2d(const Ref<MLPPMatrix> &input, const int F, const int S, const PoolType type);
|
|
|
|
Ref<MLPPTensor3> pool_3d(const Ref<MLPPTensor3> &input, const int F, const int S, const PoolType type);
|
2023-02-13 00:45:07 +01:00
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
real_t global_pool_2d(const Ref<MLPPMatrix> &input, const PoolType type);
|
|
|
|
Ref<MLPPVector> global_pool_3d(const Ref<MLPPTensor3> &input, const PoolType type);
|
2023-02-13 00:45:07 +01:00
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
real_t gaussian_2d(const real_t x, const real_t y, const real_t std);
|
|
|
|
Ref<MLPPMatrix> gaussian_filter_2d(const int size, const real_t std);
|
2023-01-27 13:01:16 +01:00
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
Ref<MLPPMatrix> dx(const Ref<MLPPMatrix> &input);
|
|
|
|
Ref<MLPPMatrix> dy(const Ref<MLPPMatrix> &input);
|
2023-01-27 13:01:16 +01:00
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
Ref<MLPPMatrix> grad_magnitude(const Ref<MLPPMatrix> &input);
|
|
|
|
Ref<MLPPMatrix> grad_orientation(const Ref<MLPPMatrix> &input);
|
2023-01-27 13:01:16 +01:00
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
Ref<MLPPTensor3> compute_m(const Ref<MLPPMatrix> &input);
|
|
|
|
Vector<Ref<MLPPMatrix>> compute_mv(const Ref<MLPPMatrix> &input);
|
2023-01-27 13:01:16 +01:00
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
//TODO better data srtucture for this. Maybe IntMatrix?
|
|
|
|
Vector<Vector<CharType>> harris_corner_detection(const Ref<MLPPMatrix> &input);
|
2023-01-27 13:01:16 +01:00
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
Ref<MLPPMatrix> get_prewitt_horizontal() const;
|
|
|
|
Ref<MLPPMatrix> get_prewitt_vertical() const;
|
|
|
|
Ref<MLPPMatrix> get_sobel_horizontal() const;
|
|
|
|
Ref<MLPPMatrix> get_sobel_vertical() const;
|
|
|
|
Ref<MLPPMatrix> get_scharr_horizontal() const;
|
|
|
|
Ref<MLPPMatrix> get_scharr_vertical() const;
|
|
|
|
Ref<MLPPMatrix> get_roberts_horizontal() const;
|
|
|
|
Ref<MLPPMatrix> get_roberts_vertical() const;
|
2023-02-13 00:45:07 +01:00
|
|
|
|
|
|
|
MLPPConvolutions();
|
2023-01-24 19:00:54 +01:00
|
|
|
|
2023-02-12 18:20:53 +01:00
|
|
|
protected:
|
|
|
|
static void _bind_methods();
|
|
|
|
|
2023-12-28 14:41:45 +01:00
|
|
|
Ref<MLPPMatrix> _prewitt_horizontal;
|
|
|
|
Ref<MLPPMatrix> _prewitt_vertical;
|
|
|
|
Ref<MLPPMatrix> _sobel_horizontal;
|
|
|
|
Ref<MLPPMatrix> _sobel_vertical;
|
|
|
|
Ref<MLPPMatrix> _scharr_horizontal;
|
|
|
|
Ref<MLPPMatrix> _scharr_vertical;
|
|
|
|
Ref<MLPPMatrix> _roberts_horizontal;
|
|
|
|
Ref<MLPPMatrix> _roberts_vertical;
|
2023-01-24 19:00:54 +01:00
|
|
|
};
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#endif // Convolutions_hpp
|