mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-24 15:57:18 +01:00
197 lines
5.4 KiB
C++
197 lines
5.4 KiB
C++
|
//
|
||
|
// TanhReg.cpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 10/2/20.
|
||
|
//
|
||
|
|
||
|
#include "tanh_reg_old.h"
|
||
|
|
||
|
#include "../activation/activation.h"
|
||
|
#include "../cost/cost.h"
|
||
|
#include "../lin_alg/lin_alg.h"
|
||
|
#include "../regularization/reg.h"
|
||
|
#include "../utilities/utilities.h"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <random>
|
||
|
|
||
|
MLPPTanhRegOld::MLPPTanhRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
|
||
|
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
|
||
|
y_hat.resize(n);
|
||
|
weights = MLPPUtilities::weightInitialization(k);
|
||
|
bias = MLPPUtilities::biasInitialization();
|
||
|
}
|
||
|
|
||
|
std::vector<real_t> MLPPTanhRegOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||
|
return Evaluate(X);
|
||
|
}
|
||
|
|
||
|
real_t MLPPTanhRegOld::modelTest(std::vector<real_t> x) {
|
||
|
return Evaluate(x);
|
||
|
}
|
||
|
|
||
|
void MLPPTanhRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||
|
MLPPActivation avn;
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPReg regularization;
|
||
|
real_t cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
forwardPass();
|
||
|
|
||
|
while (true) {
|
||
|
cost_prev = Cost(y_hat, outputSet);
|
||
|
|
||
|
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
|
||
|
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.tanh(z, 1)))));
|
||
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
||
|
|
||
|
// Calculating the bias gradients
|
||
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n;
|
||
|
|
||
|
forwardPass();
|
||
|
|
||
|
// UI PORTION
|
||
|
if (UI) {
|
||
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
||
|
MLPPUtilities::UI(weights, bias);
|
||
|
}
|
||
|
epoch++;
|
||
|
|
||
|
if (epoch > max_epoch) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void MLPPTanhRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPReg regularization;
|
||
|
real_t cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
|
||
|
while (true) {
|
||
|
std::random_device rd;
|
||
|
std::default_random_engine generator(rd());
|
||
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||
|
int outputIndex = distribution(generator);
|
||
|
|
||
|
real_t y_hat = Evaluate(inputSet[outputIndex]);
|
||
|
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
|
||
|
|
||
|
real_t error = y_hat - outputSet[outputIndex];
|
||
|
|
||
|
// Weight Updation
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * (1 - y_hat * y_hat), inputSet[outputIndex]));
|
||
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
||
|
|
||
|
// Bias updation
|
||
|
bias -= learning_rate * error * (1 - y_hat * y_hat);
|
||
|
|
||
|
y_hat = Evaluate({ inputSet[outputIndex] });
|
||
|
|
||
|
if (UI) {
|
||
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
|
||
|
MLPPUtilities::UI(weights, bias);
|
||
|
}
|
||
|
epoch++;
|
||
|
|
||
|
if (epoch > max_epoch) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
forwardPass();
|
||
|
}
|
||
|
|
||
|
void MLPPTanhRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
|
||
|
MLPPActivation avn;
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPReg regularization;
|
||
|
|
||
|
real_t cost_prev = 0;
|
||
|
int epoch = 1;
|
||
|
|
||
|
// Creating the mini-batches
|
||
|
int n_mini_batch = n / mini_batch_size;
|
||
|
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||
|
auto inputMiniBatches = std::get<0>(batches);
|
||
|
auto outputMiniBatches = std::get<1>(batches);
|
||
|
|
||
|
while (true) {
|
||
|
for (int i = 0; i < n_mini_batch; i++) {
|
||
|
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
|
||
|
std::vector<real_t> z = propagate(inputMiniBatches[i]);
|
||
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||
|
|
||
|
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
||
|
|
||
|
// Calculating the weight gradients
|
||
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.tanh(z, 1)))));
|
||
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
||
|
|
||
|
// Calculating the bias gradients
|
||
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n;
|
||
|
|
||
|
forwardPass();
|
||
|
|
||
|
y_hat = Evaluate(inputMiniBatches[i]);
|
||
|
|
||
|
if (UI) {
|
||
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
||
|
MLPPUtilities::UI(weights, bias);
|
||
|
}
|
||
|
}
|
||
|
epoch++;
|
||
|
if (epoch > max_epoch) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
forwardPass();
|
||
|
}
|
||
|
|
||
|
real_t MLPPTanhRegOld::score() {
|
||
|
MLPPUtilities util;
|
||
|
return util.performance(y_hat, outputSet);
|
||
|
}
|
||
|
|
||
|
void MLPPTanhRegOld::save(std::string fileName) {
|
||
|
MLPPUtilities util;
|
||
|
util.saveParameters(fileName, weights, bias);
|
||
|
}
|
||
|
|
||
|
real_t MLPPTanhRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||
|
MLPPReg regularization;
|
||
|
class MLPPCost cost;
|
||
|
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
|
||
|
}
|
||
|
|
||
|
std::vector<real_t> MLPPTanhRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPActivation avn;
|
||
|
return avn.tanh(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
||
|
}
|
||
|
|
||
|
std::vector<real_t> MLPPTanhRegOld::propagate(std::vector<std::vector<real_t>> X) {
|
||
|
MLPPLinAlg alg;
|
||
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
||
|
}
|
||
|
|
||
|
real_t MLPPTanhRegOld::Evaluate(std::vector<real_t> x) {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPActivation avn;
|
||
|
return avn.tanh(alg.dot(weights, x) + bias);
|
||
|
}
|
||
|
|
||
|
real_t MLPPTanhRegOld::propagate(std::vector<real_t> x) {
|
||
|
MLPPLinAlg alg;
|
||
|
return alg.dot(weights, x) + bias;
|
||
|
}
|
||
|
|
||
|
// Tanh ( wTx + b )
|
||
|
void MLPPTanhRegOld::forwardPass() {
|
||
|
MLPPActivation avn;
|
||
|
|
||
|
z = propagate(inputSet);
|
||
|
y_hat = avn.tanh(z);
|
||
|
}
|