pmlpp/mlpp/utilities/utilities.h

56 lines
2.5 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_UTILITIES_H
#define MLPP_UTILITIES_H
//
// Utilities.hpp
//
// Created by Marc Melikyan on 1/16/21.
//
#include <string>
2023-01-24 19:00:54 +01:00
#include <tuple>
#include <vector>
2023-01-24 19:20:18 +01:00
2023-01-24 19:00:54 +01:00
class Utilities {
public:
// Weight Init
static std::vector<double> weightInitialization(int n, std::string type = "Default");
static double biasInitialization();
static std::vector<std::vector<double>> weightInitialization(int n, int m, std::string type = "Default");
static std::vector<double> biasInitialization(int n);
// Cost/Performance related Functions
double performance(std::vector<double> y_hat, std::vector<double> y);
double performance(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y);
// Parameter Saving Functions
void saveParameters(std::string fileName, std::vector<double> weights, double bias, bool app = 0, int layer = -1);
void saveParameters(std::string fileName, std::vector<double> weights, std::vector<double> initial, double bias, bool app = 0, int layer = -1);
void saveParameters(std::string fileName, std::vector<std::vector<double>> weights, std::vector<double> bias, bool app = 0, int layer = -1);
// Gradient Descent related
static void UI(std::vector<double> weights, double bias);
static void UI(std::vector<double> weights, std::vector<double> initial, double bias);
static void UI(std::vector<std::vector<double>>, std::vector<double> bias);
static void CostInfo(int epoch, double cost_prev, double Cost);
static std::vector<std::vector<std::vector<double>>> createMiniBatches(std::vector<std::vector<double>> inputSet, int n_mini_batch);
static std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<std::vector<double>>> createMiniBatches(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, int n_mini_batch);
static std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<std::vector<std::vector<double>>>> createMiniBatches(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet, int n_mini_batch);
// F1 score, Precision/Recall, TP, FP, TN, FN, etc.
std::tuple<double, double, double, double> TF_PN(std::vector<double> y_hat, std::vector<double> y); //TF_PN = "True", "False", "Positive", "Negative"
double recall(std::vector<double> y_hat, std::vector<double> y);
double precision(std::vector<double> y_hat, std::vector<double> y);
double accuracy(std::vector<double> y_hat, std::vector<double> y);
double f1_score(std::vector<double> y_hat, std::vector<double> y);
private:
};
2023-01-24 19:20:18 +01:00
#endif /* Utilities_hpp */