pmlpp/mlpp/numerical_analysis/numerical_analysis.h

58 lines
2.9 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_NUMERICAL_ANALYSIS_H
#define MLPP_NUMERICAL_ANALYSIS_H
//
// NumericalAnalysis.hpp
//
//
#include <string>
2023-01-24 19:00:54 +01:00
#include <vector>
2023-01-24 19:20:18 +01:00
2023-01-24 19:00:54 +01:00
class NumericalAnalysis {
public:
/* A numerical method for derivatives is used. This may be subject to change,
as an analytical method for calculating derivatives will most likely be used in
the future.
*/
double numDiff(double (*function)(double), double x);
double numDiff_2(double (*function)(double), double x);
double numDiff_3(double (*function)(double), double x);
double constantApproximation(double (*function)(double), double c);
double linearApproximation(double (*function)(double), double c, double x);
double quadraticApproximation(double (*function)(double), double c, double x);
double cubicApproximation(double (*function)(double), double c, double x);
double numDiff(double (*function)(std::vector<double>), std::vector<double> x, int axis);
double numDiff_2(double (*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2);
double numDiff_3(double (*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2, int axis3);
double newtonRaphsonMethod(double (*function)(double), double x_0, double epoch_num);
double halleyMethod(double (*function)(double), double x_0, double epoch_num);
double invQuadraticInterpolation(double (*function)(double), std::vector<double> x_0, double epoch_num);
double eulerianMethod(double (*derivative)(double), std::vector<double> q_0, double p, double h); // Euler's method for solving diffrential equations.
double eulerianMethod(double (*derivative)(std::vector<double>), std::vector<double> q_0, double p, double h); // Euler's method for solving diffrential equations.
double growthMethod(double C, double k, double t); // General growth-based diffrential equations can be solved by seperation of variables.
std::vector<double> jacobian(double (*function)(std::vector<double>), std::vector<double> x); // Indeed, for functions with scalar outputs the Jacobians will be vectors.
std::vector<std::vector<double>> hessian(double (*function)(std::vector<double>), std::vector<double> x);
std::vector<std::vector<std::vector<double>>> thirdOrderTensor(double (*function)(std::vector<double>), std::vector<double> x);
double constantApproximation(double (*function)(std::vector<double>), std::vector<double> c);
double linearApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
double quadraticApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
double cubicApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
double laplacian(double (*function)(std::vector<double>), std::vector<double> x); // laplacian
std::string secondPartialDerivativeTest(double (*function)(std::vector<double>), std::vector<double> x);
};
2023-01-24 19:20:18 +01:00
#endif /* NumericalAnalysis_hpp */