pmlpp/MLPP/SVC/SVC.hpp

57 lines
1.8 KiB
C++
Raw Normal View History

//
// SVC.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
// https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2
// Illustratd a practical definition of the Hinge Loss function and its gradient when optimizing with SGD.
#ifndef SVC_hpp
#define SVC_hpp
#include <vector>
#include <string>
namespace MLPP {
class SVC{
public:
SVC(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, double C);
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
double modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
void SGD(double learning_rate, int max_epoch, bool UI = 1);
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
double score();
void save(std::string fileName);
private:
double Cost(std::vector <double> y_hat, std::vector<double> y, std::vector<double> weights, double C);
std::vector<double> Evaluate(std::vector<std::vector<double>> X);
std::vector<double> propagate(std::vector<std::vector<double>> X);
double Evaluate(std::vector<double> x);
double propagate(std::vector<double> x);
void forwardPass();
std::vector<std::vector<double>> inputSet;
std::vector<double> outputSet;
std::vector<double> z;
std::vector<double> y_hat;
std::vector<double> weights;
double bias;
double C;
int n;
int k;
// UI Portion
void UI(int epoch, double cost_prev);
};
}
#endif /* SVC_hpp */