mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-14 14:07:18 +01:00
56 lines
1.5 KiB
C
56 lines
1.5 KiB
C
|
|
||
|
#ifndef MLPP_TANH_REG_OLD_H
|
||
|
#define MLPP_TANH_REG_OLD_H
|
||
|
|
||
|
//
|
||
|
// TanhReg.hpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 10/2/20.
|
||
|
//
|
||
|
|
||
|
#include "core/math/math_defs.h"
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
class MLPPTanhRegOld {
|
||
|
public:
|
||
|
MLPPTanhRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||
|
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||
|
real_t modelTest(std::vector<real_t> x);
|
||
|
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||
|
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||
|
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||
|
real_t score();
|
||
|
void save(std::string fileName);
|
||
|
|
||
|
private:
|
||
|
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
|
||
|
|
||
|
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
|
||
|
std::vector<real_t> propagate(std::vector<std::vector<real_t>> X);
|
||
|
real_t Evaluate(std::vector<real_t> x);
|
||
|
real_t propagate(std::vector<real_t> x);
|
||
|
void forwardPass();
|
||
|
|
||
|
std::vector<std::vector<real_t>> inputSet;
|
||
|
std::vector<real_t> outputSet;
|
||
|
std::vector<real_t> z;
|
||
|
std::vector<real_t> y_hat;
|
||
|
std::vector<real_t> weights;
|
||
|
real_t bias;
|
||
|
|
||
|
int n;
|
||
|
int k;
|
||
|
|
||
|
// UI Portion
|
||
|
void UI(int epoch, real_t cost_prev);
|
||
|
|
||
|
// Regularization Params
|
||
|
std::string reg;
|
||
|
real_t lambda;
|
||
|
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||
|
};
|
||
|
|
||
|
#endif /* TanhReg_hpp */
|