pmlpp/mlpp/lin_reg/lin_reg.h

121 lines
4.9 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_LIN_REG_H
#define MLPP_LIN_REG_H
2023-12-30 00:41:59 +01:00
/*************************************************************************/
/* lin_reg.h */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
2023-12-30 00:43:39 +01:00
/* Copyright (c) 2023-present Péter Magyar. */
2023-12-30 00:41:59 +01:00
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
2023-02-11 11:09:29 +01:00
#include "core/object/reference.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPLinReg : public Reference {
GDCLASS(MLPPLinReg, Reference);
2023-01-24 19:00:54 +01:00
public:
2023-02-11 11:09:29 +01:00
/*
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set();
void set_output_set(const Ref<MLPPVector> &val);
MLPPReg::RegularizationType get_reg();
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda();
void set_lambda(const real_t val);
real_t get_alpha();
void set_alpha(const real_t val);
*/
2023-02-15 00:30:02 +01:00
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
2023-02-11 11:09:29 +01:00
void newton_raphson(real_t learning_rate, int max_epoch, bool ui = false);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool ui = false);
void nag(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool ui = false);
void adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui = false);
void adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui = false);
void adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
void adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
void nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
void normal_equation();
2023-01-27 13:01:16 +01:00
real_t score();
2023-02-11 11:09:29 +01:00
2023-02-15 00:30:02 +01:00
void save(const String &file_name);
2023-01-24 19:00:54 +01:00
2023-02-11 11:09:29 +01:00
bool is_initialized();
void initialize();
2023-02-15 00:30:02 +01:00
MLPPLinReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
2023-02-11 11:09:29 +01:00
MLPPLinReg();
~MLPPLinReg();
2023-01-24 19:00:54 +01:00
2023-02-11 11:09:29 +01:00
protected:
2023-02-15 00:30:02 +01:00
real_t cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y);
2023-01-24 19:00:54 +01:00
2023-02-15 00:30:02 +01:00
real_t evaluatev(const Ref<MLPPVector> &x);
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
2023-01-24 19:00:54 +01:00
2023-02-11 11:09:29 +01:00
void forward_pass();
static void _bind_methods();
2023-02-15 00:30:02 +01:00
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
Ref<MLPPVector> _y_hat;
Ref<MLPPVector> _weights;
2023-02-11 11:09:29 +01:00
real_t _bias;
int _n;
int _k;
2023-01-24 19:00:54 +01:00
// Regularization Params
2023-02-15 00:30:02 +01:00
MLPPReg::RegularizationType _reg;
2023-02-11 11:09:29 +01:00
int _lambda;
int _alpha; /* This is the controlling param for Elastic Net*/
bool _initialized;
2023-01-24 19:00:54 +01:00
};
2023-01-24 19:20:18 +01:00
#endif /* LinReg_hpp */