pmlpp/MLPP/BernoulliNB/BernoulliNB.cpp

182 lines
5.0 KiB
C++
Raw Normal View History

//
// BernoulliNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "BernoulliNB.hpp"
#include "Utilities/Utilities.hpp"
#include "LinAlg/LinAlg.hpp"
#include "Data/Data.hpp"
#include <iostream>
#include <random>
namespace MLPP{
BernoulliNB::BernoulliNB(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet)
: inputSet(inputSet), outputSet(outputSet), class_num(2)
{
y_hat.resize(outputSet.size());
Evaluate();
}
std::vector<double> BernoulliNB::modelSetTest(std::vector<std::vector<double>> X){
std::vector<double> y_hat;
for(int i = 0; i < X.size(); i++){
y_hat.push_back(modelTest(X[i]));
}
return y_hat;
}
double BernoulliNB::modelTest(std::vector<double> x){
double score_0 = 1;
double score_1 = 1;
std::vector<int> foundIndices;
for(int j = 0; j < x.size(); j++){
for(int k = 0; k < vocab.size(); k++){
if(x[j] == vocab[k]){
score_0 *= theta[0][vocab[k]];
score_1 *= theta[1][vocab[k]];
foundIndices.push_back(k);
}
}
}
for(int i = 0; i < vocab.size(); i++){
bool found = false;
for(int j = 0; j < foundIndices.size(); j++){
if(vocab[i] == vocab[foundIndices[j]]){
found = true;
}
}
if(!found){
score_0 *= 1 - theta[0][vocab[i]];
score_1 *= 1 - theta[1][vocab[i]];
}
}
score_0 *= prior_0;
score_1 *= prior_1;
// Assigning the traning example to a class
if(score_0 > score_1){
return 0;
}
else{
return 1;
}
}
double BernoulliNB::score(){
Utilities util;
return util.performance(y_hat, outputSet);
}
void BernoulliNB::computeVocab(){
LinAlg alg;
Data data;
vocab = data.vecToSet<double>(alg.flatten(inputSet));
}
void BernoulliNB::computeTheta(){
// Resizing theta for the sake of ease & proper access of the elements.
theta.resize(class_num);
// Setting all values in the hasmap by default to 0.
for(int i = class_num - 1; i >= 0; i--){
for(int j = 0; j < vocab.size(); j++){
theta[i][vocab[j]] = 0;
}
}
for(int i = 0; i < inputSet.size(); i++){
for(int j = 0; j < inputSet[0].size(); j++){
theta[outputSet[i]][inputSet[i][j]]++;
}
}
for(int i = 0; i < theta.size(); i++){
for(int j = 0; j < theta[i].size(); j++){
if(i == 0){
theta[i][j] /= prior_0 * y_hat.size();
}
else{
theta[i][j] /= prior_1 * y_hat.size();
}
}
}
}
void BernoulliNB::Evaluate(){
for(int i = 0; i < outputSet.size(); i++){
// Pr(B | A) * Pr(A)
double score_0 = 1;
double score_1 = 1;
double sum = 0;
for(int i = 0; i < outputSet.size(); i++){
if(outputSet[i] == 1){ sum += outputSet[i]; }
}
// Easy computation of priors, i.e. Pr(C_k)
prior_1 = sum / y_hat.size();
prior_0 = 1 - prior_1;
// Evaluating Theta...
computeTheta();
// Evaluating the vocab set...
computeVocab();
std::vector<int> foundIndices;
for(int j = 0; j < inputSet.size(); j++){
for(int k = 0; k < vocab.size(); k++){
if(inputSet[i][j] == vocab[k]){
score_0 += std::log(theta[0][vocab[k]]);
score_1 += std::log(theta[1][vocab[k]]);
foundIndices.push_back(k);
}
}
}
for(int i = 0; i < vocab.size(); i++){
bool found = false;
for(int j = 0; j < foundIndices.size(); j++){
if(vocab[i] == vocab[foundIndices[j]]){
found = true;
}
}
if(!found){
score_0 += std::log(1 - theta[0][vocab[i]]);
score_1 += std::log(1 - theta[1][vocab[i]]);
}
}
score_0 += std::log(prior_0);
score_1 += std::log(prior_1);
score_0 = exp(score_0);
score_1 = exp(score_1);
std::cout << score_0 << std::endl;
std::cout << score_1 << std::endl;
// Assigning the traning example to a class
if(score_0 > score_1){
y_hat[i] = 0;
}
else{
y_hat[i] = 1;
}
}
}
}