pmlpp/mlpp/ann/ann.h

68 lines
2.8 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_ANN_H
#define MLPP_ANN_H
//
// ANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "../hidden_layer/hidden_layer.h"
#include "../output_layer/output_layer.h"
#include <string>
2023-01-24 19:00:54 +01:00
#include <tuple>
#include <vector>
2023-01-24 19:29:29 +01:00
class MLPPANN {
2023-01-24 19:00:54 +01:00
public:
2023-01-24 19:29:29 +01:00
MLPPANN(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet);
~MLPPANN();
2023-01-24 19:00:54 +01:00
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
double modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
void SGD(double learning_rate, int max_epoch, bool UI = 1);
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
void Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI = 1);
void Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI = 1);
void Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI = 1);
void Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
void Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
void Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
void AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
double score();
void save(std::string fileName);
void setLearningRateScheduler(std::string type, double decayConstant);
void setLearningRateScheduler(std::string type, double decayConstant, double dropRate);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
private:
double applyLearningRateScheduler(double learningRate, double decayConstant, double epoch, double dropRate);
double Cost(std::vector<double> y_hat, std::vector<double> y);
void forwardPass();
void updateParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, std::vector<double> outputLayerUpdation, double learning_rate);
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> computeGradients(std::vector<double> y_hat, std::vector<double> outputSet);
void UI(int epoch, double cost_prev, std::vector<double> y_hat, std::vector<double> outputSet);
std::vector<std::vector<double>> inputSet;
std::vector<double> outputSet;
std::vector<double> y_hat;
std::vector<HiddenLayer> network;
OutputLayer *outputLayer;
int n;
int k;
std::string lrScheduler;
double decayConstant;
double dropRate;
};
#endif /* ANN_hpp */