pmlpp/mlpp/c_log_log_reg/c_log_log_reg.h

64 lines
1.6 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_C_LOG_LOG_REG_H
#define MLPP_C_LOG_LOG_REG_H
//
// CLogLogReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
#include <string>
2023-01-24 19:00:54 +01:00
#include <vector>
2023-01-24 19:29:29 +01:00
class MLPPCLogLogReg {
2023-01-24 19:00:54 +01:00
public:
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
real_t model_test(std::vector<real_t> x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void mle(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
2023-01-27 13:01:16 +01:00
real_t score();
2023-01-24 19:00:54 +01:00
MLPPCLogLogReg(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, std::string p_reg = "None", real_t p_lambda = 0.5, real_t p_alpha = 0.5);
MLPPCLogLogReg();
~MLPPCLogLogReg();
2023-01-24 19:00:54 +01:00
private:
void weight_initialization(int k);
void bias_initialization();
real_t cost(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t evaluatev(std::vector<real_t> x);
real_t propagatev(std::vector<real_t> x);
std::vector<real_t> evaluatem(std::vector<std::vector<real_t>> X);
std::vector<real_t> propagatem(std::vector<std::vector<real_t>> X);
void forward_pass();
2023-01-24 19:00:54 +01:00
std::vector<std::vector<real_t>> _input_set;
std::vector<real_t> _output_set;
std::vector<real_t> _y_hat;
std::vector<real_t> _z;
std::vector<real_t> _weights;
2023-01-27 13:01:16 +01:00
real_t bias;
2023-01-24 19:00:54 +01:00
int _n;
int _k;
2023-01-24 19:00:54 +01:00
// Regularization Params
std::string _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
2023-01-24 19:00:54 +01:00
};
#endif /* CLogLogReg_hpp */