pandemonium_engine_minimal/core/math/transform.cpp

257 lines
6.8 KiB
C++

/* transform.cpp */
#include "transform.h"
#include "core/math/math_funcs.h"
#include "core/string/print_string.h"
void Transform::invert() {
basis.transpose();
origin = basis.xform(-origin);
}
Transform Transform::inverse() const {
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
Transform ret = *this;
ret.invert();
return ret;
}
void Transform::affine_invert() {
basis.invert();
origin = basis.xform(-origin);
}
Transform Transform::affine_inverse() const {
Transform ret = *this;
ret.affine_invert();
return ret;
}
Transform Transform::rotated(const Vector3 &p_axis, real_t p_angle) const {
// Equivalent to left multiplication
Basis p_basis(p_axis, p_angle);
return Transform(p_basis * basis, p_basis.xform(origin));
}
Transform Transform::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
// Equivalent to right multiplication
Basis p_basis(p_axis, p_angle);
return Transform(basis * p_basis, origin);
}
void Transform::rotate(const Vector3 &p_axis, real_t p_phi) {
*this = rotated(p_axis, p_phi);
}
void Transform::rotate_local(const Vector3 &p_axis, real_t p_phi) {
*this = rotated_local(p_axis, p_phi);
}
void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
basis.rotate(p_axis, p_phi);
}
void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
#ifdef MATH_CHECKS
ERR_FAIL_COND(p_eye == p_target);
ERR_FAIL_COND(p_up.length() == 0);
#endif
// Reference: MESA source code
Vector3 v_x, v_y, v_z;
/* Make rotation matrix */
/* Z vector */
v_z = p_eye - p_target;
v_z.normalize();
v_y = p_up;
v_x = v_y.cross(v_z);
#ifdef MATH_CHECKS
ERR_FAIL_COND(v_x.length() == 0);
#endif
/* Recompute Y = Z cross X */
v_y = v_z.cross(v_x);
v_x.normalize();
v_y.normalize();
basis.set(v_x, v_y, v_z);
origin = p_eye;
}
Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
Transform t = *this;
t.set_look_at(origin, p_target, p_up);
return t;
}
void Transform::scale(const Vector3 &p_scale) {
basis.scale(p_scale);
origin *= p_scale;
}
Transform Transform::scaled(const Vector3 &p_scale) const {
// Equivalent to left multiplication
return Transform(basis.scaled(p_scale), origin * p_scale);
}
Transform Transform::scaled_local(const Vector3 &p_scale) const {
// Equivalent to right multiplication
return Transform(basis.scaled_local(p_scale), origin);
}
void Transform::scale_basis(const Vector3 &p_scale) {
basis.scale(p_scale);
}
void Transform::translate_local(real_t p_tx, real_t p_ty, real_t p_tz) {
translate_local(Vector3(p_tx, p_ty, p_tz));
}
void Transform::translate_local(const Vector3 &p_translation) {
for (int i = 0; i < 3; i++) {
origin[i] += basis[i].dot(p_translation);
}
}
void Transform::translate_localr(real_t p_tx, real_t p_ty, real_t p_tz) {
translate_local(Vector3(p_tx, p_ty, p_tz));
}
void Transform::translate_localv(const Vector3 &p_translation) {
for (int i = 0; i < 3; i++) {
origin[i] += basis[i].dot(p_translation);
}
}
Transform Transform::translated(const Vector3 &p_translation) const {
// Equivalent to left multiplication
return Transform(basis, origin + p_translation);
}
Transform Transform::translated_local(const Vector3 &p_translation) const {
// Equivalent to right multiplication
return Transform(basis, origin + basis.xform(p_translation));
}
void Transform::orthonormalize() {
basis.orthonormalize();
}
Transform Transform::orthonormalized() const {
Transform _copy = *this;
_copy.orthonormalize();
return _copy;
}
void Transform::orthogonalize() {
basis.orthogonalize();
}
Transform Transform::orthogonalized() const {
Transform _copy = *this;
_copy.orthogonalize();
return _copy;
}
bool Transform::is_equal_approx(const Transform &p_transform) const {
return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin);
}
bool Transform::operator==(const Transform &p_transform) const {
return (basis == p_transform.basis && origin == p_transform.origin);
}
bool Transform::operator!=(const Transform &p_transform) const {
return (basis != p_transform.basis || origin != p_transform.origin);
}
void Transform::operator*=(const Transform &p_transform) {
origin = xform(p_transform.origin);
basis *= p_transform.basis;
}
Transform Transform::operator*(const Transform &p_transform) const {
Transform t = *this;
t *= p_transform;
return t;
}
void Transform::operator*=(const real_t p_val) {
origin *= p_val;
basis *= p_val;
}
Transform Transform::operator*(const real_t p_val) const {
Transform ret(*this);
ret *= p_val;
return ret;
}
Transform Transform::spherical_interpolate_with(const Transform &p_transform, real_t p_c) const {
/* not sure if very "efficient" but good enough? */
Transform interp;
Vector3 src_scale = basis.get_scale();
Quaternion src_rot = basis.get_rotation_quaternion();
Vector3 src_loc = origin;
Vector3 dst_scale = p_transform.basis.get_scale();
Quaternion dst_rot = p_transform.basis.get_rotation_quaternion();
Vector3 dst_loc = p_transform.origin;
interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.linear_interpolate(dst_scale, p_c));
interp.origin = src_loc.linear_interpolate(dst_loc, p_c);
return interp;
}
Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const {
/* not sure if very "efficient" but good enough? */
Vector3 src_scale = basis.get_scale();
Quaternion src_rot = basis.get_rotation_quaternion();
Vector3 src_loc = origin;
Vector3 dst_scale = p_transform.basis.get_scale();
Quaternion dst_rot = p_transform.basis.get_rotation_quaternion();
Vector3 dst_loc = p_transform.origin;
Transform interp;
interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.linear_interpolate(dst_scale, p_c));
interp.origin = src_loc.linear_interpolate(dst_loc, p_c);
return interp;
}
Transform::operator String() const {
return "[X: " + basis.get_axis(0).operator String() +
", Y: " + basis.get_axis(1).operator String() +
", Z: " + basis.get_axis(2).operator String() +
", O: " + origin.operator String() + "]";
}
Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) :
basis(p_basis),
origin(p_origin) {
}
Transform::Transform(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) {
basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz);
origin = Vector3(ox, oy, oz);
}
Transform::Transform(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) :
origin(p_origin) {
basis.set_column(0, p_x);
basis.set_column(1, p_y);
basis.set_column(2, p_z);
}