pandemonium_engine_minimal/doc/classes/Transform2D.xml
2023-12-14 23:24:47 +01:00

345 lines
13 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform2D" version="4.2">
<brief_description>
2D transformation (2×3 matrix).
</brief_description>
<description>
2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math tutorial index">$DOCS_URL/tutorials/math/index.md</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.md</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="from" type="Transform" />
<description>
Constructs the transform from a 3D [Transform].
</description>
</method>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="x_axis" type="Vector2" />
<argument index="1" name="y_axis" type="Vector2" />
<argument index="2" name="origin" type="Vector2" />
<description>
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
</description>
</method>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="rotation" type="float" />
<argument index="1" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</method>
<method name="affine_inverse">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="affine_invert">
<description>
</description>
</method>
<method name="basis_determinant">
<return type="float" />
<description>
</description>
</method>
<method name="basis_scaled">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="basis_xform">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="basis_xform_inv">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the inverse basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="get_axis">
<return type="Vector2" />
<argument index="0" name="axis" type="int" />
<description>
</description>
</method>
<method name="get_column">
<return type="Vector2" />
<argument index="0" name="column" type="int" />
<description>
</description>
</method>
<method name="get_origin">
<return type="Vector2" />
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation">
<return type="float" />
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale">
<return type="Vector2" />
<description>
Returns the scale.
</description>
</method>
<method name="get_skew">
<return type="float" />
<description>
</description>
</method>
<method name="interpolate_with">
<return type="Transform2D" />
<argument index="0" name="transform" type="Transform2D" />
<argument index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
<method name="invert">
<description>
</description>
</method>
<method name="is_equal_approx">
<return type="bool" />
<argument index="0" name="transform" type="Transform2D" />
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name="looking_at">
<return type="Transform2D" />
<argument index="0" name="target" type="Vector2" />
<description>
</description>
</method>
<method name="orthonormalize">
<description>
</description>
</method>
<method name="orthonormalized">
<return type="Transform2D" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name="rotate">
<argument index="0" name="phi" type="float" />
<description>
</description>
</method>
<method name="rotated">
<return type="Transform2D" />
<argument index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="rotated_local">
<return type="Transform2D" />
<argument index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="scale">
<argument index="0" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="scale_basis">
<argument index="0" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="scaled">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="scaled_local">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="set_axis">
<argument index="0" name="axis" type="int" />
<argument index="1" name="vec" type="Vector2" />
<description>
</description>
</method>
<method name="set_column">
<argument index="0" name="column" type="float" />
<description>
</description>
</method>
<method name="set_origin">
<argument index="0" name="origin" type="float" />
<description>
</description>
</method>
<method name="set_rotation_and_scale">
<argument index="0" name="rot" type="float" />
<argument index="1" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="set_rotation_scale_and_skew">
<argument index="0" name="rot" type="float" />
<argument index="1" name="scale" type="Vector2" />
<argument index="2" name="skew" type="float" />
<description>
</description>
</method>
<method name="set_scale">
<argument index="0" name="scale" type="float" />
<description>
</description>
</method>
<method name="set_skew">
<argument index="0" name="angle" type="float" />
<description>
</description>
</method>
<method name="tdotx">
<return type="float" />
<argument index="0" name="v" type="Vector2" />
<description>
</description>
</method>
<method name="tdoty">
<return type="float" />
<argument index="0" name="v" type="Vector2" />
<description>
</description>
</method>
<method name="translate_localr">
<argument index="0" name="tx" type="float" />
<argument index="1" name="ty" type="float" />
<description>
</description>
</method>
<method name="translate_localv">
<argument index="0" name="translation" type="Vector2" />
<description>
</description>
</method>
<method name="translated">
<return type="Transform2D" />
<argument index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="translated_local">
<return type="Transform2D" />
<argument index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="translater">
<argument index="0" name="tx" type="float" />
<argument index="1" name="ty" type="float" />
<description>
</description>
</method>
<method name="translatev">
<argument index="0" name="origin" type="Vector2" />
<description>
</description>
</method>
<method name="untranslated">
<return type="Transform2D" />
<description>
</description>
</method>
<method name="xform">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )">
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )">
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )">
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )">
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )">
The [Transform2D] that will flip something along the X axis.
</constant>
<constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )">
The [Transform2D] that will flip something along the Y axis.
</constant>
</constants>
</class>