pandemonium_engine_minimal/core/math/triangulate.cpp

184 lines
4.1 KiB
C++

/* triangulate.cpp */
#include "triangulate.h"
real_t Triangulate::get_area(const Vector<Vector2> &contour) {
int n = contour.size();
const Vector2 *c = &contour[0];
real_t A = 0.0;
for (int p = n - 1, q = 0; q < n; p = q++) {
A += c[p].cross(c[q]);
}
return A * 0.5f;
}
/*
* `is_inside_triangle` decides if a point P is inside the triangle
* defined by A, B, C.
*/
bool Triangulate::is_inside_triangle(real_t Ax, real_t Ay,
real_t Bx, real_t By,
real_t Cx, real_t Cy,
real_t Px, real_t Py,
bool include_edges) {
real_t ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
real_t cCROSSap, bCROSScp, aCROSSbp;
ax = Cx - Bx;
ay = Cy - By;
bx = Ax - Cx;
by = Ay - Cy;
cx = Bx - Ax;
cy = By - Ay;
apx = Px - Ax;
apy = Py - Ay;
bpx = Px - Bx;
bpy = Py - By;
cpx = Px - Cx;
cpy = Py - Cy;
aCROSSbp = ax * bpy - ay * bpx;
cCROSSap = cx * apy - cy * apx;
bCROSScp = bx * cpy - by * cpx;
if (include_edges) {
return ((aCROSSbp > 0) && (bCROSScp > 0) && (cCROSSap > 0));
} else {
return ((aCROSSbp >= 0) && (bCROSScp >= 0) && (cCROSSap >= 0));
}
}
bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, int n, const Vector<int> &V, bool relaxed) {
int p;
real_t Ax, Ay, Bx, By, Cx, Cy, Px, Py;
const Vector2 *contour = &p_contour[0];
Ax = contour[V[u]].x;
Ay = contour[V[u]].y;
Bx = contour[V[v]].x;
By = contour[V[v]].y;
Cx = contour[V[w]].x;
Cy = contour[V[w]].y;
// It can happen that the triangulation ends up with three aligned vertices to deal with.
// In this scenario, making the check below strict may reject the possibility of
// forming a last triangle with these aligned vertices, preventing the triangulatiom
// from completing.
// To avoid that we allow zero-area triangles if all else failed.
float threshold = relaxed ? -CMP_EPSILON : CMP_EPSILON;
if (threshold > (((Bx - Ax) * (Cy - Ay)) - ((By - Ay) * (Cx - Ax)))) {
return false;
}
for (p = 0; p < n; p++) {
if ((p == u) || (p == v) || (p == w)) {
continue;
}
Px = contour[V[p]].x;
Py = contour[V[p]].y;
if (is_inside_triangle(Ax, Ay, Bx, By, Cx, Cy, Px, Py, relaxed)) {
return false;
}
}
return true;
}
bool Triangulate::triangulate(const Vector<Vector2> &contour, Vector<int> &result) {
/* allocate and initialize list of Vertices in polygon */
int n = contour.size();
if (n < 3) {
return false;
}
Vector<int> V;
V.resize(n);
/* we want a counter-clockwise polygon in V */
if (0 < get_area(contour)) {
for (int v = 0; v < n; v++) {
V.write[v] = v;
}
} else {
for (int v = 0; v < n; v++) {
V.write[v] = (n - 1) - v;
}
}
bool relaxed = false;
int nv = n;
/* remove nv-2 Vertices, creating 1 triangle every time */
int count = 2 * nv; /* error detection */
for (int v = nv - 1; nv > 2;) {
/* if we loop, it is probably a non-simple polygon */
if (0 >= (count--)) {
if (relaxed) {
//** Triangulate: ERROR - probable bad polygon!
return false;
} else {
// There may be aligned vertices that the strict
// checks prevent from triangulating. In this situation
// we are better off adding flat triangles than
// failing, so we relax the checks and try one last
// round.
// Only relaxing the constraints as a last resort avoids
// degenerate triangles when they aren't necessary.
count = 2 * nv;
relaxed = true;
}
}
/* three consecutive vertices in current polygon, <u,v,w> */
int u = v;
if (nv <= u) {
u = 0; /* previous */
}
v = u + 1;
if (nv <= v) {
v = 0; /* new v */
}
int w = v + 1;
if (nv <= w) {
w = 0; /* next */
}
if (snip(contour, u, v, w, nv, V, relaxed)) {
int a, b, c, s, t;
/* true names of the vertices */
a = V[u];
b = V[v];
c = V[w];
/* output Triangle */
result.push_back(a);
result.push_back(b);
result.push_back(c);
/* remove v from remaining polygon */
for (s = v, t = v + 1; t < nv; s++, t++) {
V.write[s] = V[t];
}
nv--;
/* reset error detection counter */
count = 2 * nv;
}
}
return true;
}