/*************************************************************************/ /* geometry.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "geometry.h" #include "core/containers/local_vector.h" #include "core/string/print_string.h" #include "core/thirdparty/misc/clipper.hpp" #include "core/thirdparty/misc/triangulator.h" #define STB_RECT_PACK_IMPLEMENTATION #include "thirdparty/stb_rect_pack/stb_rect_pack.h" #define SCALE_FACTOR 100000.0 // Based on CMP_EPSILON. void Geometry::get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt) { // Based on David Eberly's Computation of Distance Between Line Segments algorithm. Vector3 p = p_p1 - p_p0; Vector3 q = p_q1 - p_q0; Vector3 r = p_p0 - p_q0; real_t a = p.dot(p); real_t b = p.dot(q); real_t c = q.dot(q); real_t d = p.dot(r); real_t e = q.dot(r); real_t s = 0.0f; real_t t = 0.0f; real_t det = a * c - b * b; if (det > CMP_EPSILON) { // Non-parallel segments real_t bte = b * e; real_t ctd = c * d; if (bte <= ctd) { // s <= 0.0f if (e <= 0.0f) { // t <= 0.0f s = (-d >= a ? 1 : (-d > 0.0f ? -d / a : 0.0f)); t = 0.0f; } else if (e < c) { // 0.0f < t < 1 s = 0.0f; t = e / c; } else { // t >= 1 s = (b - d >= a ? 1 : (b - d > 0.0f ? (b - d) / a : 0.0f)); t = 1; } } else { // s > 0.0f s = bte - ctd; if (s >= det) { // s >= 1 if (b + e <= 0.0f) { // t <= 0.0f s = (-d <= 0.0f ? 0.0f : (-d < a ? -d / a : 1)); t = 0.0f; } else if (b + e < c) { // 0.0f < t < 1 s = 1; t = (b + e) / c; } else { // t >= 1 s = (b - d <= 0.0f ? 0.0f : (b - d < a ? (b - d) / a : 1)); t = 1; } } else { // 0.0f < s < 1 real_t ate = a * e; real_t btd = b * d; if (ate <= btd) { // t <= 0.0f s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a)); t = 0.0f; } else { // t > 0.0f t = ate - btd; if (t >= det) { // t >= 1 s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a)); t = 1; } else { // 0.0f < t < 1 s /= det; t /= det; } } } } } else { // Parallel segments if (e <= 0.0f) { s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a)); t = 0.0f; } else if (e >= c) { s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a)); t = 1; } else { s = 0.0f; t = e / c; } } r_ps = (1 - s) * p_p0 + s * p_p1; r_qt = (1 - t) * p_q0 + t * p_q1; } real_t Geometry::get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1) { Vector3 ps; Vector3 qt; get_closest_points_between_segments(p_p0, p_p1, p_q0, p_q1, ps, qt); Vector3 st = qt - ps; return st.length(); } void Geometry::OccluderMeshData::clear() { faces.clear(); vertices.clear(); } void Geometry::MeshData::clear() { faces.clear(); edges.clear(); vertices.clear(); } void Geometry::MeshData::optimize_vertices() { RBMap vtx_remap; for (int i = 0; i < faces.size(); i++) { for (int j = 0; j < faces[i].indices.size(); j++) { int idx = faces[i].indices[j]; if (!vtx_remap.has(idx)) { int ni = vtx_remap.size(); vtx_remap[idx] = ni; } faces.write[i].indices.write[j] = vtx_remap[idx]; } } for (int i = 0; i < edges.size(); i++) { int a = edges[i].a; int b = edges[i].b; if (!vtx_remap.has(a)) { int ni = vtx_remap.size(); vtx_remap[a] = ni; } if (!vtx_remap.has(b)) { int ni = vtx_remap.size(); vtx_remap[b] = ni; } edges.write[i].a = vtx_remap[a]; edges.write[i].b = vtx_remap[b]; } Vector new_vertices; new_vertices.resize(vtx_remap.size()); for (int i = 0; i < vertices.size(); i++) { if (vtx_remap.has(i)) { new_vertices.write[vtx_remap[i]] = vertices[i]; } } vertices = new_vertices; } struct _FaceClassify { struct _Link { int face; int edge; void clear() { face = -1; edge = -1; } _Link() { face = -1; edge = -1; } }; bool valid; int group; _Link links[3]; Face3 face; _FaceClassify() { group = -1; valid = false; }; }; static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) { // Connect faces, error will occur if an edge is shared between more than 2 faces. // Clear connections. bool error = false; for (int i = 0; i < len; i++) { for (int j = 0; j < 3; j++) { p_faces[i].links[j].clear(); } } for (int i = 0; i < len; i++) { if (p_faces[i].group != p_group) { continue; } for (int j = i + 1; j < len; j++) { if (p_faces[j].group != p_group) { continue; } for (int k = 0; k < 3; k++) { Vector3 vi1 = p_faces[i].face.vertex[k]; Vector3 vi2 = p_faces[i].face.vertex[(k + 1) % 3]; for (int l = 0; l < 3; l++) { Vector3 vj2 = p_faces[j].face.vertex[l]; Vector3 vj1 = p_faces[j].face.vertex[(l + 1) % 3]; if (vi1.distance_to(vj1) < 0.00001f && vi2.distance_to(vj2) < 0.00001f) { if (p_faces[i].links[k].face != -1) { ERR_PRINT("already linked\n"); error = true; break; } if (p_faces[j].links[l].face != -1) { ERR_PRINT("already linked\n"); error = true; break; } p_faces[i].links[k].face = j; p_faces[i].links[k].edge = l; p_faces[j].links[l].face = i; p_faces[j].links[l].edge = k; } } if (error) { break; } } if (error) { break; } } if (error) { break; } } for (int i = 0; i < len; i++) { p_faces[i].valid = true; for (int j = 0; j < 3; j++) { if (p_faces[i].links[j].face == -1) { p_faces[i].valid = false; } } } return error; } static bool _group_face(_FaceClassify *p_faces, int len, int p_index, int p_group) { if (p_faces[p_index].group >= 0) { return false; } p_faces[p_index].group = p_group; for (int i = 0; i < 3; i++) { ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face, len, true); _group_face(p_faces, len, p_faces[p_index].links[i].face, p_group); } return true; } PoolVector> Geometry::separate_objects(PoolVector p_array) { PoolVector> objects; int len = p_array.size(); PoolVector::Read r = p_array.read(); const Face3 *arrayptr = r.ptr(); PoolVector<_FaceClassify> fc; fc.resize(len); PoolVector<_FaceClassify>::Write fcw = fc.write(); _FaceClassify *_fcptr = fcw.ptr(); for (int i = 0; i < len; i++) { _fcptr[i].face = arrayptr[i]; } bool error = _connect_faces(_fcptr, len, -1); ERR_FAIL_COND_V_MSG(error, PoolVector>(), "Invalid geometry."); // Group connected faces in separate objects. int group = 0; for (int i = 0; i < len; i++) { if (!_fcptr[i].valid) { continue; } if (_group_face(_fcptr, len, i, group)) { group++; } } // Group connected faces in separate objects. for (int i = 0; i < len; i++) { _fcptr[i].face = arrayptr[i]; } if (group >= 0) { objects.resize(group); PoolVector>::Write obw = objects.write(); PoolVector *group_faces = obw.ptr(); for (int i = 0; i < len; i++) { if (!_fcptr[i].valid) { continue; } if (_fcptr[i].group >= 0 && _fcptr[i].group < group) { group_faces[_fcptr[i].group].push_back(_fcptr[i].face); } } } return objects; } /*** GEOMETRY WRAPPER ***/ enum _CellFlags { _CELL_SOLID = 1, _CELL_EXTERIOR = 2, _CELL_STEP_MASK = 0x1C, _CELL_STEP_NONE = 0 << 2, _CELL_STEP_Y_POS = 1 << 2, _CELL_STEP_Y_NEG = 2 << 2, _CELL_STEP_X_POS = 3 << 2, _CELL_STEP_X_NEG = 4 << 2, _CELL_STEP_Z_POS = 5 << 2, _CELL_STEP_Z_NEG = 6 << 2, _CELL_STEP_DONE = 7 << 2, _CELL_PREV_MASK = 0xE0, _CELL_PREV_NONE = 0 << 5, _CELL_PREV_Y_POS = 1 << 5, _CELL_PREV_Y_NEG = 2 << 5, _CELL_PREV_X_POS = 3 << 5, _CELL_PREV_X_NEG = 4 << 5, _CELL_PREV_Z_POS = 5 << 5, _CELL_PREV_Z_NEG = 6 << 5, _CELL_PREV_FIRST = 7 << 5, }; static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) { AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z)); aabb.position = aabb.position * voxelsize; aabb.size = aabb.size * voxelsize; if (!p_face.intersects_aabb(aabb)) { return; } if (len_x == 1 && len_y == 1 && len_z == 1) { p_cell_status[x][y][z] = _CELL_SOLID; return; } int div_x = len_x > 1 ? 2 : 1; int div_y = len_y > 1 ? 2 : 1; int div_z = len_z > 1 ? 2 : 1; #define _SPLIT(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \ if (m_div == 1) { \ m_new_v = m_v; \ m_new_len_v = 1; \ } else if (m_i == 0) { \ m_new_v = m_v; \ m_new_len_v = m_len_v / 2; \ } else { \ m_new_v = m_v + m_len_v / 2; \ m_new_len_v = m_len_v - m_len_v / 2; \ } int new_x; int new_len_x; int new_y; int new_len_y; int new_z; int new_len_z; for (int i = 0; i < div_x; i++) { _SPLIT(i, div_x, x, len_x, new_x, new_len_x); for (int j = 0; j < div_y; j++) { _SPLIT(j, div_y, y, len_y, new_y, new_len_y); for (int k = 0; k < div_z; k++) { _SPLIT(k, div_z, z, len_z, new_z, new_len_z); _plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face); } } } } static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) { if (p_cell_status[x][y][z] & 3) { return; // Nothing to do, already used and/or visited. } p_cell_status[x][y][z] = _CELL_PREV_FIRST; while (true) { uint8_t &c = p_cell_status[x][y][z]; if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) { // Haven't been in here, mark as outside. p_cell_status[x][y][z] |= _CELL_EXTERIOR; } if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) { // If not done, increase step. c += 1 << 2; } if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) { // Go back. switch (c & _CELL_PREV_MASK) { case _CELL_PREV_FIRST: { return; } break; case _CELL_PREV_Y_POS: { y++; ERR_FAIL_COND(y >= len_y); } break; case _CELL_PREV_Y_NEG: { y--; ERR_FAIL_COND(y < 0); } break; case _CELL_PREV_X_POS: { x++; ERR_FAIL_COND(x >= len_x); } break; case _CELL_PREV_X_NEG: { x--; ERR_FAIL_COND(x < 0); } break; case _CELL_PREV_Z_POS: { z++; ERR_FAIL_COND(z >= len_z); } break; case _CELL_PREV_Z_NEG: { z--; ERR_FAIL_COND(z < 0); } break; default: { ERR_FAIL(); } } continue; } int next_x = x, next_y = y, next_z = z; uint8_t prev = 0; switch (c & _CELL_STEP_MASK) { case _CELL_STEP_Y_POS: { next_y++; prev = _CELL_PREV_Y_NEG; } break; case _CELL_STEP_Y_NEG: { next_y--; prev = _CELL_PREV_Y_POS; } break; case _CELL_STEP_X_POS: { next_x++; prev = _CELL_PREV_X_NEG; } break; case _CELL_STEP_X_NEG: { next_x--; prev = _CELL_PREV_X_POS; } break; case _CELL_STEP_Z_POS: { next_z++; prev = _CELL_PREV_Z_NEG; } break; case _CELL_STEP_Z_NEG: { next_z--; prev = _CELL_PREV_Z_POS; } break; default: ERR_FAIL(); } if (next_x < 0 || next_x >= len_x) { continue; } if (next_y < 0 || next_y >= len_y) { continue; } if (next_z < 0 || next_z >= len_z) { continue; } if (p_cell_status[next_x][next_y][next_z] & 3) { continue; } x = next_x; y = next_y; z = next_z; p_cell_status[x][y][z] |= prev; } } static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, PoolVector &p_faces) { ERR_FAIL_INDEX(x, len_x); ERR_FAIL_INDEX(y, len_y); ERR_FAIL_INDEX(z, len_z); if (p_cell_status[x][y][z] & _CELL_EXTERIOR) { return; } #define vert(m_idx) Vector3(((m_idx)&4) >> 2, ((m_idx)&2) >> 1, (m_idx)&1) static const uint8_t indices[6][4] = { { 7, 6, 4, 5 }, { 7, 3, 2, 6 }, { 7, 5, 1, 3 }, { 0, 2, 3, 1 }, { 0, 1, 5, 4 }, { 0, 4, 6, 2 }, }; for (int i = 0; i < 6; i++) { Vector3 face_points[4]; int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); bool plot = false; if (disp_x < 0 || disp_x >= len_x) { plot = true; } if (disp_y < 0 || disp_y >= len_y) { plot = true; } if (disp_z < 0 || disp_z >= len_z) { plot = true; } if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR)) { plot = true; } if (!plot) { continue; } for (int j = 0; j < 4; j++) { face_points[j] = vert(indices[i][j]) + Vector3(x, y, z); } p_faces.push_back( Face3( face_points[0], face_points[1], face_points[2])); p_faces.push_back( Face3( face_points[2], face_points[3], face_points[0])); } } PoolVector Geometry::wrap_geometry(PoolVector p_array, real_t *p_error) { #define _MIN_SIZE 1.0f #define _MAX_LENGTH 20 int face_count = p_array.size(); PoolVector::Read facesr = p_array.read(); const Face3 *faces = facesr.ptr(); AABB global_aabb; for (int i = 0; i < face_count; i++) { if (i == 0) { global_aabb = faces[i].get_aabb(); } else { global_aabb.merge_with(faces[i].get_aabb()); } } global_aabb.grow_by(0.01f); // Avoid numerical error. // Determine amount of cells in grid axis. int div_x, div_y, div_z; if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH) { div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1; } else { div_x = _MAX_LENGTH; } if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH) { div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1; } else { div_y = _MAX_LENGTH; } if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH) { div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1; } else { div_z = _MAX_LENGTH; } Vector3 voxelsize = global_aabb.size; voxelsize.x /= div_x; voxelsize.y /= div_y; voxelsize.z /= div_z; // Create and initialize cells to zero. uint8_t ***cell_status = memnew_arr(uint8_t **, div_x); for (int i = 0; i < div_x; i++) { cell_status[i] = memnew_arr(uint8_t *, div_y); for (int j = 0; j < div_y; j++) { cell_status[i][j] = memnew_arr(uint8_t, div_z); for (int k = 0; k < div_z; k++) { cell_status[i][j][k] = 0; } } } // Plot faces into cells. for (int i = 0; i < face_count; i++) { Face3 f = faces[i]; for (int j = 0; j < 3; j++) { f.vertex[j] -= global_aabb.position; } _plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f); } // Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking. for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_y; j++) { _mark_outside(cell_status, i, j, 0, div_x, div_y, div_z); _mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z); } } for (int i = 0; i < div_z; i++) { for (int j = 0; j < div_y; j++) { _mark_outside(cell_status, 0, j, i, div_x, div_y, div_z); _mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z); } } for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_z; j++) { _mark_outside(cell_status, i, 0, j, div_x, div_y, div_z); _mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z); } } // Build faces for the inside-outside cell divisors. PoolVector wrapped_faces; for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_y; j++) { for (int k = 0; k < div_z; k++) { _build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces); } } } // Transform face vertices to global coords. int wrapped_faces_count = wrapped_faces.size(); PoolVector::Write wrapped_facesw = wrapped_faces.write(); Face3 *wrapped_faces_ptr = wrapped_facesw.ptr(); for (int i = 0; i < wrapped_faces_count; i++) { for (int j = 0; j < 3; j++) { Vector3 &v = wrapped_faces_ptr[i].vertex[j]; v = v * voxelsize; v += global_aabb.position; } } // clean up grid for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_y; j++) { memdelete_arr(cell_status[i][j]); } memdelete_arr(cell_status[i]); } memdelete_arr(cell_status); if (p_error) { *p_error = voxelsize.length(); } return wrapped_faces; } Vector> Geometry::decompose_polygon_in_convex(Vector polygon) { Vector> decomp; List in_poly, out_poly; TriangulatorPoly inp; inp.Init(polygon.size()); for (int i = 0; i < polygon.size(); i++) { inp.GetPoint(i) = polygon[i]; } inp.SetOrientation(TRIANGULATOR_CCW); in_poly.push_back(inp); TriangulatorPartition tpart; if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { // Failed. ERR_PRINT("Convex decomposing failed!"); return decomp; } decomp.resize(out_poly.size()); int idx = 0; for (List::Element *I = out_poly.front(); I; I = I->next()) { TriangulatorPoly &tp = I->get(); decomp.write[idx].resize(tp.GetNumPoints()); for (int64_t i = 0; i < tp.GetNumPoints(); i++) { decomp.write[idx].write[i] = tp.GetPoint(i); } idx++; } return decomp; } Geometry::MeshData Geometry::build_convex_mesh(const PoolVector &p_planes) { MeshData mesh; #define SUBPLANE_SIZE 1024.0 real_t subplane_size = 1024.0; // Should compute this from the actual plane. for (int i = 0; i < p_planes.size(); i++) { Plane p = p_planes[i]; Vector3 ref = Vector3(0.0, 1.0, 0.0); if (ABS(p.normal.dot(ref)) > 0.95f) { ref = Vector3(0.0, 0.0, 1.0); // Change axis. } Vector3 right = p.normal.cross(ref).normalized(); Vector3 up = p.normal.cross(right).normalized(); Vector vertices; Vector3 center = p.get_any_point(); // make a quad clockwise vertices.push_back(center - up * subplane_size + right * subplane_size); vertices.push_back(center - up * subplane_size - right * subplane_size); vertices.push_back(center + up * subplane_size - right * subplane_size); vertices.push_back(center + up * subplane_size + right * subplane_size); for (int j = 0; j < p_planes.size(); j++) { if (j == i) { continue; } Vector new_vertices; Plane clip = p_planes[j]; if (clip.normal.dot(p.normal) > 0.95f) { continue; } if (vertices.size() < 3) { break; } for (int k = 0; k < vertices.size(); k++) { int k_n = (k + 1) % vertices.size(); Vector3 edge0_A = vertices[k]; Vector3 edge1_A = vertices[k_n]; real_t dist0 = clip.distance_to(edge0_A); real_t dist1 = clip.distance_to(edge1_A); if (dist0 <= 0) { // Behind plane. new_vertices.push_back(vertices[k]); } // Check for different sides and non coplanar. if ((dist0 * dist1) < 0) { // Calculate intersection. Vector3 rel = edge1_A - edge0_A; real_t den = clip.normal.dot(rel); if (Math::is_zero_approx(den)) { continue; // Point too short. } real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den; Vector3 inters = edge0_A + rel * dist; new_vertices.push_back(inters); } } vertices = new_vertices; } if (vertices.size() < 3) { continue; } // Result is a clockwise face. MeshData::Face face; // Add face indices. for (int j = 0; j < vertices.size(); j++) { int idx = -1; for (int k = 0; k < mesh.vertices.size(); k++) { if (mesh.vertices[k].distance_to(vertices[j]) < 0.001f) { idx = k; break; } } if (idx == -1) { idx = mesh.vertices.size(); mesh.vertices.push_back(vertices[j]); } face.indices.push_back(idx); } face.plane = p; mesh.faces.push_back(face); // Add edge. for (int j = 0; j < face.indices.size(); j++) { int a = face.indices[j]; int b = face.indices[(j + 1) % face.indices.size()]; bool found = false; for (int k = 0; k < mesh.edges.size(); k++) { if (mesh.edges[k].a == a && mesh.edges[k].b == b) { found = true; break; } if (mesh.edges[k].b == a && mesh.edges[k].a == b) { found = true; break; } } if (found) { continue; } MeshData::Edge edge; edge.a = a; edge.b = b; mesh.edges.push_back(edge); } } return mesh; } PoolVector Geometry::build_box_planes(const Vector3 &p_extents) { PoolVector planes; planes.push_back(Plane(Vector3(1, 0, 0), p_extents.x)); planes.push_back(Plane(Vector3(-1, 0, 0), p_extents.x)); planes.push_back(Plane(Vector3(0, 1, 0), p_extents.y)); planes.push_back(Plane(Vector3(0, -1, 0), p_extents.y)); planes.push_back(Plane(Vector3(0, 0, 1), p_extents.z)); planes.push_back(Plane(Vector3(0, 0, -1), p_extents.z)); return planes; } PoolVector Geometry::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) { ERR_FAIL_INDEX_V(p_axis, 3, PoolVector()); PoolVector planes; for (int i = 0; i < p_sides; i++) { Vector3 normal; normal[(p_axis + 1) % 3] = Math::cos(i * (real_t)(2.0 * Math_PI) / p_sides); normal[(p_axis + 2) % 3] = Math::sin(i * (real_t)(2.0 * Math_PI) / p_sides); planes.push_back(Plane(normal, p_radius)); } Vector3 axis; axis[p_axis] = 1.0; planes.push_back(Plane(axis, p_height * 0.5f)); planes.push_back(Plane(-axis, p_height * 0.5f)); return planes; } PoolVector Geometry::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) { ERR_FAIL_INDEX_V(p_axis, 3, PoolVector()); PoolVector planes; Vector3 axis; axis[p_axis] = 1; Vector3 axis_neg; axis_neg[(p_axis + 1) % 3] = 1; axis_neg[(p_axis + 2) % 3] = 1; axis_neg[p_axis] = -1; for (int i = 0; i < p_lons; i++) { Vector3 normal; normal[(p_axis + 1) % 3] = Math::cos(i * (real_t)(2.0 * Math_PI) / p_lons); normal[(p_axis + 2) % 3] = Math::sin(i * (real_t)(2.0 * Math_PI) / p_lons); planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { // FIXME: This is stupid. Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized(); Vector3 pos = angle * p_radius; planes.push_back(Plane(pos, angle)); planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); } } return planes; } PoolVector Geometry::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) { ERR_FAIL_INDEX_V(p_axis, 3, PoolVector()); PoolVector planes; Vector3 axis; axis[p_axis] = 1; Vector3 axis_neg; axis_neg[(p_axis + 1) % 3] = 1; axis_neg[(p_axis + 2) % 3] = 1; axis_neg[p_axis] = -1; for (int i = 0; i < p_sides; i++) { Vector3 normal; normal[(p_axis + 1) % 3] = Math::cos(i * (real_t)(2.0 * Math_PI) / p_sides); normal[(p_axis + 2) % 3] = Math::sin(i * (real_t)(2.0 * Math_PI) / p_sides); planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized(); Vector3 pos = axis * p_height * 0.5f + angle * p_radius; planes.push_back(Plane(pos, angle)); planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); } } return planes; } struct _AtlasWorkRect { Size2i s; Point2i p; int idx; _FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; } }; struct _AtlasWorkRectResult { Vector<_AtlasWorkRect> result; int max_w; int max_h; }; void Geometry::make_atlas(const Vector &p_rects, Vector &r_result, Size2i &r_size) { // Super simple, almost brute force scanline stacking fitter. // It's pretty basic for now, but it tries to make sure that the aspect ratio of the // resulting atlas is somehow square. This is necessary because video cards have limits. // On texture size (usually 2048 or 4096), so the more square a texture, the more chances. // It will work in every hardware. // For example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a // 256x8192 atlas (won't work anywhere). ERR_FAIL_COND(p_rects.size() == 0); for (int i = 0; i < p_rects.size(); i++) { ERR_FAIL_COND(p_rects[i].width <= 0); ERR_FAIL_COND(p_rects[i].height <= 0); } Vector<_AtlasWorkRect> wrects; wrects.resize(p_rects.size()); for (int i = 0; i < p_rects.size(); i++) { wrects.write[i].s = p_rects[i]; wrects.write[i].idx = i; } wrects.sort(); int widest = wrects[0].s.width; Vector<_AtlasWorkRectResult> results; for (int i = 0; i <= 12; i++) { int w = 1 << i; int max_h = 0; int max_w = 0; if (w < widest) { continue; } Vector hmax; hmax.resize(w); for (int j = 0; j < w; j++) { hmax.write[j] = 0; } // Place them. int ofs = 0; int limit_h = 0; for (int j = 0; j < wrects.size(); j++) { if (ofs + wrects[j].s.width > w) { ofs = 0; } int from_y = 0; for (int k = 0; k < wrects[j].s.width; k++) { if (hmax[ofs + k] > from_y) { from_y = hmax[ofs + k]; } } wrects.write[j].p.x = ofs; wrects.write[j].p.y = from_y; int end_h = from_y + wrects[j].s.height; int end_w = ofs + wrects[j].s.width; if (ofs == 0) { limit_h = end_h; } for (int k = 0; k < wrects[j].s.width; k++) { hmax.write[ofs + k] = end_h; } if (end_h > max_h) { max_h = end_h; } if (end_w > max_w) { max_w = end_w; } if (ofs == 0 || end_h > limit_h) { // While h limit not reached, keep stacking. ofs += wrects[j].s.width; } } _AtlasWorkRectResult result; result.result = wrects; result.max_h = max_h; result.max_w = max_w; results.push_back(result); } // Find the result with the best aspect ratio. int best = -1; real_t best_aspect = 1e20; for (int i = 0; i < results.size(); i++) { real_t h = next_power_of_2(results[i].max_h); real_t w = next_power_of_2(results[i].max_w); real_t aspect = h > w ? h / w : w / h; if (aspect < best_aspect) { best = i; best_aspect = aspect; } } r_result.resize(p_rects.size()); for (int i = 0; i < p_rects.size(); i++) { r_result.write[results[best].result[i].idx] = results[best].result[i].p; } r_size = Size2(results[best].max_w, results[best].max_h); } Vector> Geometry::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector &p_polypath_a, const Vector &p_polypath_b, bool is_a_open) { using namespace ClipperLib; ClipType op = ctUnion; switch (p_op) { case OPERATION_UNION: op = ctUnion; break; case OPERATION_DIFFERENCE: op = ctDifference; break; case OPERATION_INTERSECTION: op = ctIntersection; break; case OPERATION_XOR: op = ctXor; break; } Path path_a, path_b; // Need to scale points (Clipper's requirement for robust computation). for (int i = 0; i != p_polypath_a.size(); ++i) { path_a << IntPoint(p_polypath_a[i].x * (real_t)SCALE_FACTOR, p_polypath_a[i].y * (real_t)SCALE_FACTOR); } for (int i = 0; i != p_polypath_b.size(); ++i) { path_b << IntPoint(p_polypath_b[i].x * (real_t)SCALE_FACTOR, p_polypath_b[i].y * (real_t)SCALE_FACTOR); } Clipper clp; clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0. clp.AddPath(path_b, ptClip, true); // Polylines cannot be set as clip. Paths paths; if (is_a_open) { PolyTree tree; // Needed to populate polylines. clp.Execute(op, tree); OpenPathsFromPolyTree(tree, paths); } else { clp.Execute(op, paths); // Works on closed polygons only. } // Have to scale points down now. Vector> polypaths; for (Paths::size_type i = 0; i < paths.size(); ++i) { Vector polypath; const Path &scaled_path = paths[i]; for (Paths::size_type j = 0; j < scaled_path.size(); ++j) { polypath.push_back(Point2( static_cast(scaled_path[j].X) / (real_t)SCALE_FACTOR, static_cast(scaled_path[j].Y) / (real_t)SCALE_FACTOR)); } polypaths.push_back(polypath); } return polypaths; } Vector> Geometry::_polypath_offset(const Vector &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) { using namespace ClipperLib; JoinType jt = jtSquare; switch (p_join_type) { case JOIN_SQUARE: jt = jtSquare; break; case JOIN_ROUND: jt = jtRound; break; case JOIN_MITER: jt = jtMiter; break; } EndType et = etClosedPolygon; switch (p_end_type) { case END_POLYGON: et = etClosedPolygon; break; case END_JOINED: et = etClosedLine; break; case END_BUTT: et = etOpenButt; break; case END_SQUARE: et = etOpenSquare; break; case END_ROUND: et = etOpenRound; break; } ClipperOffset co(2.0f, 0.25f * (real_t)SCALE_FACTOR); // Defaults from ClipperOffset. Path path; // Need to scale points (Clipper's requirement for robust computation). for (int i = 0; i != p_polypath.size(); ++i) { path << IntPoint(p_polypath[i].x * (real_t)SCALE_FACTOR, p_polypath[i].y * (real_t)SCALE_FACTOR); } co.AddPath(path, jt, et); Paths paths; co.Execute(paths, p_delta * (real_t)SCALE_FACTOR); // Inflate/deflate. // Have to scale points down now. Vector> polypaths; for (Paths::size_type i = 0; i < paths.size(); ++i) { Vector polypath; const Path &scaled_path = paths[i]; for (Paths::size_type j = 0; j < scaled_path.size(); ++j) { polypath.push_back(Point2( static_cast(scaled_path[j].X) / (real_t)SCALE_FACTOR, static_cast(scaled_path[j].Y) / (real_t)SCALE_FACTOR)); } polypaths.push_back(polypath); } return polypaths; } Vector> Geometry::_polypaths_do_operations(PolyBooleanOperation p_op, const Vector> &p_polypaths, const Vector &p_polypath_clip, PolygonFillType fill_type, bool is_a_open) { using namespace ClipperLib; ClipType op = ctUnion; switch (p_op) { case OPERATION_UNION: op = ctUnion; break; case OPERATION_DIFFERENCE: op = ctDifference; break; case OPERATION_INTERSECTION: op = ctIntersection; break; case OPERATION_XOR: op = ctXor; break; } Paths in_paths; // Need to scale points (Clipper's requirement for robust computation). for (int j = 0; j < p_polypaths.size(); ++j) { const Vector &polypath = p_polypaths[j]; Path path_a; for (int i = 0; i != polypath.size(); ++i) { path_a << IntPoint(polypath[i].x * (real_t)SCALE_FACTOR, polypath[i].y * (real_t)SCALE_FACTOR); } in_paths << path_a; } Path path_clip; for (int i = 0; i != p_polypath_clip.size(); ++i) { path_clip << IntPoint(p_polypath_clip[i].x * (real_t)SCALE_FACTOR, p_polypath_clip[i].y * (real_t)SCALE_FACTOR); } Clipper clp; clp.AddPaths(in_paths, ptSubject, !is_a_open); clp.AddPath(path_clip, ptClip, true); // Polylines cannot be set as clip. Paths paths; PolyFillType pft; switch (fill_type) { case POLYGON_FILL_TYPE_EVEN_ODD: pft = pftEvenOdd; break; case POLYGON_FILL_TYPE_NON_ZERO: pft = pftNonZero; break; case POLYGON_FILL_TYPE_POSITIVE: pft = pftPositive; break; case POLYGON_FILL_TYPE_NEGATIVE: pft = pftNegative; break; default: pft = pftEvenOdd; break; } if (is_a_open) { PolyTree tree; // Needed to populate polylines. clp.Execute(op, tree, pft); OpenPathsFromPolyTree(tree, paths); } else { clp.Execute(op, paths, pft); // Works on closed polygons only. } // Have to scale points down now. Vector> polypaths; for (Paths::size_type i = 0; i < paths.size(); ++i) { Vector polypath; const Path &scaled_path = paths[i]; for (Paths::size_type j = 0; j < scaled_path.size(); ++j) { polypath.push_back(Point2( static_cast(scaled_path[j].X) / (real_t)SCALE_FACTOR, static_cast(scaled_path[j].Y) / (real_t)SCALE_FACTOR)); } polypaths.push_back(polypath); } return polypaths; } Vector> Geometry::_polypaths2_do_operations(PolyBooleanOperation p_op, const Vector> &p_polypaths, const Vector> &p_polypath_clip, PolygonFillType fill_type, bool is_a_open) { using namespace ClipperLib; ClipType op = ctUnion; switch (p_op) { case OPERATION_UNION: op = ctUnion; break; case OPERATION_DIFFERENCE: op = ctDifference; break; case OPERATION_INTERSECTION: op = ctIntersection; break; case OPERATION_XOR: op = ctXor; break; } Paths in_paths; // Need to scale points (Clipper's requirement for robust computation). for (int j = 0; j < p_polypaths.size(); ++j) { const Vector &polypath = p_polypaths[j]; Path path_a; for (int i = 0; i != polypath.size(); ++i) { path_a << IntPoint(polypath[i].x * (real_t)SCALE_FACTOR, polypath[i].y * (real_t)SCALE_FACTOR); } in_paths << path_a; } Paths paths_clip; for (int j = 0; j < p_polypath_clip.size(); ++j) { const Vector &polypath = p_polypath_clip[j]; Path path_clip; for (int i = 0; i != polypath.size(); ++i) { path_clip << IntPoint(polypath[i].x * (real_t)SCALE_FACTOR, polypath[i].y * (real_t)SCALE_FACTOR); } paths_clip << path_clip; } Clipper clp; clp.AddPaths(in_paths, ptSubject, !is_a_open); clp.AddPaths(paths_clip, ptClip, true); // Polylines cannot be set as clip. Paths paths; PolyFillType pft; switch (fill_type) { case POLYGON_FILL_TYPE_EVEN_ODD: pft = pftEvenOdd; break; case POLYGON_FILL_TYPE_NON_ZERO: pft = pftNonZero; break; case POLYGON_FILL_TYPE_POSITIVE: pft = pftPositive; break; case POLYGON_FILL_TYPE_NEGATIVE: pft = pftNegative; break; default: pft = pftEvenOdd; break; } if (is_a_open) { PolyTree tree; // Needed to populate polylines. clp.Execute(op, tree, pft); OpenPathsFromPolyTree(tree, paths); } else { clp.Execute(op, paths, pft); // Works on closed polygons only. } // Have to scale points down now. Vector> polypaths; for (Paths::size_type i = 0; i < paths.size(); ++i) { Vector polypath; const Path &scaled_path = paths[i]; for (Paths::size_type j = 0; j < scaled_path.size(); ++j) { polypath.push_back(Point2( static_cast(scaled_path[j].X) / (real_t)SCALE_FACTOR, static_cast(scaled_path[j].Y) / (real_t)SCALE_FACTOR)); } polypaths.push_back(polypath); } return polypaths; } static void _recursive_process_polytree_items(List &p_tppl_in_polygon, const ClipperLib::PolyNode *p_polypath_item) { using namespace ClipperLib; Vector polygon_vertices; for (uint32_t i = 0; i < p_polypath_item->Contour.size(); ++i) { const IntPoint &polypath_point = p_polypath_item->Contour[i]; // Have to scale points down now. polygon_vertices.push_back(Vector2(static_cast(polypath_point.X / (real_t)SCALE_FACTOR), static_cast(polypath_point.Y / (real_t)SCALE_FACTOR))); } TriangulatorPoly tp; tp.Init(polygon_vertices.size()); for (int j = 0; j < polygon_vertices.size(); j++) { tp[j] = polygon_vertices[j]; } if (p_polypath_item->IsHole()) { tp.SetOrientation(TRIANGULATOR_CW); tp.SetHole(true); } else { tp.SetOrientation(TRIANGULATOR_CCW); } p_tppl_in_polygon.push_back(tp); for (int i = 0; i < p_polypath_item->ChildCount(); i++) { const ClipperLib::PolyNode *polypath_item = p_polypath_item->Childs[i]; _recursive_process_polytree_items(p_tppl_in_polygon, polypath_item); } } bool Geometry::_merge_convex_decompose_polygon_2d(Geometry::PolyBooleanOperation p_op, const Vector> &p_polygons, PoolVector &r_new_vertices, Vector> &r_new_polygons, Geometry::PolygonFillType fill_type) { using namespace ClipperLib; ClipType op = ctUnion; switch (p_op) { case OPERATION_UNION: op = ctUnion; break; case OPERATION_DIFFERENCE: op = ctDifference; break; case OPERATION_INTERSECTION: op = ctIntersection; break; case OPERATION_XOR: op = ctXor; break; } PolyFillType pft; switch (fill_type) { case POLYGON_FILL_TYPE_EVEN_ODD: pft = pftEvenOdd; break; case POLYGON_FILL_TYPE_NON_ZERO: pft = pftNonZero; break; case POLYGON_FILL_TYPE_POSITIVE: pft = pftPositive; break; case POLYGON_FILL_TYPE_NEGATIVE: pft = pftNegative; break; default: pft = pftEvenOdd; break; } Paths polygon_paths_scaled; for (int i = 0; i < p_polygons.size(); i++) { const Vector &baked_outline = p_polygons[i]; Path polygon_path; for (int j = 0; j < baked_outline.size(); ++j) { const Vector2 &baked_outline_point = baked_outline[j]; polygon_path << IntPoint(baked_outline_point.x * (real_t)SCALE_FACTOR, baked_outline_point.y * (real_t)SCALE_FACTOR); } polygon_paths_scaled.push_back(polygon_path); } PolyTree polytree; Clipper clp; clp.AddPaths(polygon_paths_scaled, ptSubject, true); clp.Execute(op, polytree, pft); List tppl_in_polygon, tppl_out_polygon; for (int i = 0; i < polytree.ChildCount(); i++) { const ClipperLib::PolyNode *polypath_item = polytree.Childs[i]; _recursive_process_polytree_items(tppl_in_polygon, polypath_item); } TriangulatorPartition tpart; if (tpart.ConvexPartition_HM(&tppl_in_polygon, &tppl_out_polygon) == 0) { //failed! return false; } HashMap points; for (List::Element *I = tppl_out_polygon.front(); I; I = I->next()) { TriangulatorPoly &tp = I->get(); Vector new_polygon; for (int64_t i = 0; i < tp.GetNumPoints(); i++) { HashMap::Element *E = points.find(tp[i]); if (!E) { E = points.insert(tp[i], r_new_vertices.size()); r_new_vertices.push_back(tp[i]); } new_polygon.push_back(E->value()); } r_new_polygons.push_back(new_polygon); } return true; } real_t Geometry::calculate_convex_hull_volume(const Geometry::MeshData &p_md) { if (!p_md.vertices.size()) { return 0; } // find center Vector3 center; for (int n = 0; n < p_md.vertices.size(); n++) { center += p_md.vertices[n]; } center /= p_md.vertices.size(); Face3 fa; real_t volume = 0.0; // volume of each cone is 1/3 * height * area of face for (int f = 0; f < p_md.faces.size(); f++) { const Geometry::MeshData::Face &face = p_md.faces[f]; real_t height = 0.0; real_t face_area = 0.0; for (int c = 0; c < face.indices.size() - 2; c++) { fa.vertex[0] = p_md.vertices[face.indices[0]]; fa.vertex[1] = p_md.vertices[face.indices[c + 1]]; fa.vertex[2] = p_md.vertices[face.indices[c + 2]]; if (!c) { // calculate height Plane plane(fa.vertex[0], fa.vertex[1], fa.vertex[2]); height = -plane.distance_to(center); } face_area += Math::sqrt(fa.get_twice_area_squared()); } volume += face_area * height; } volume *= (real_t)((1.0 / 3.0) * 0.5); return volume; } // note this function is slow, because it builds meshes etc. Not ideal to use in realtime. // Planes must face OUTWARD from the center of the convex hull, by convention. bool Geometry::convex_hull_intersects_convex_hull(const Plane *p_planes_a, int p_plane_count_a, const Plane *p_planes_b, int p_plane_count_b) { if (!p_plane_count_a || !p_plane_count_b) { return false; } // OR alternative approach, we can call compute_convex_mesh_points() // with both sets of planes, to get an intersection. Not sure which method is // faster... this may be faster with more complex hulls. // the usual silliness to get from one vector format to another... PoolVector planes_a; PoolVector planes_b; { planes_a.resize(p_plane_count_a); PoolVector::Write w = planes_a.write(); memcpy(w.ptr(), p_planes_a, p_plane_count_a * sizeof(Plane)); } { planes_b.resize(p_plane_count_b); PoolVector::Write w = planes_b.write(); memcpy(w.ptr(), p_planes_b, p_plane_count_b * sizeof(Plane)); } Geometry::MeshData md_A = build_convex_mesh(planes_a); Geometry::MeshData md_B = build_convex_mesh(planes_b); // hull can't be built if (!md_A.vertices.size() || !md_B.vertices.size()) { return false; } // first check the points against the planes for (int p = 0; p < p_plane_count_a; p++) { const Plane &plane = p_planes_a[p]; for (int n = 0; n < md_B.vertices.size(); n++) { if (!plane.is_point_over(md_B.vertices[n])) { return true; } } } for (int p = 0; p < p_plane_count_b; p++) { const Plane &plane = p_planes_b[p]; for (int n = 0; n < md_A.vertices.size(); n++) { if (!plane.is_point_over(md_A.vertices[n])) { return true; } } } // now check edges for (int n = 0; n < md_A.edges.size(); n++) { const Vector3 &pt_a = md_A.vertices[md_A.edges[n].a]; const Vector3 &pt_b = md_A.vertices[md_A.edges[n].b]; if (segment_intersects_convex(pt_a, pt_b, p_planes_b, p_plane_count_b, nullptr, nullptr)) { return true; } } for (int n = 0; n < md_B.edges.size(); n++) { const Vector3 &pt_a = md_B.vertices[md_B.edges[n].a]; const Vector3 &pt_b = md_B.vertices[md_B.edges[n].b]; if (segment_intersects_convex(pt_a, pt_b, p_planes_a, p_plane_count_a, nullptr, nullptr)) { return true; } } return false; } Vector Geometry::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count, real_t p_epsilon) { Vector points; // Iterate through every unique combination of any three planes. for (int i = p_plane_count - 1; i >= 0; i--) { for (int j = i - 1; j >= 0; j--) { for (int k = j - 1; k >= 0; k--) { // Find the point where these planes all cross over (if they // do at all). Vector3 convex_shape_point; if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) { // See if any *other* plane excludes this point because it's // on the wrong side. bool excluded = false; for (int n = 0; n < p_plane_count; n++) { if (n != i && n != j && n != k) { real_t dist = p_planes[n].distance_to(convex_shape_point); if (dist > p_epsilon) { excluded = true; break; } } } // Only add the point if it passed all tests. if (!excluded) { points.push_back(convex_shape_point); } } } } } return points; } Vector Geometry::partial_pack_rects(const Vector &p_sizes, const Size2i &p_atlas_size) { Vector nodes; nodes.resize(p_atlas_size.width); memset(nodes.ptrw(), 0, sizeof(stbrp_node) * nodes.size()); stbrp_context context; stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width); Vector rects; rects.resize(p_sizes.size()); for (int i = 0; i < p_sizes.size(); i++) { rects.write[i].id = i; rects.write[i].w = p_sizes[i].width; rects.write[i].h = p_sizes[i].height; rects.write[i].x = 0; rects.write[i].y = 0; rects.write[i].was_packed = 0; } stbrp_pack_rects(&context, rects.ptrw(), rects.size()); Vector ret; ret.resize(p_sizes.size()); for (int i = 0; i < p_sizes.size(); i++) { ret.write[rects[i].id] = { rects[i].x, rects[i].y, static_cast(rects[i].was_packed) }; } return ret; } // Expects polygon as a triangle fan real_t Geometry::find_polygon_area(const Vector3 *p_verts, int p_num_verts) { if (!p_verts || (p_num_verts < 3)) { return 0.0; } Face3 f; f.vertex[0] = p_verts[0]; f.vertex[1] = p_verts[1]; f.vertex[2] = p_verts[1]; real_t area = 0.0; for (int n = 2; n < p_num_verts; n++) { f.vertex[1] = f.vertex[2]; f.vertex[2] = p_verts[n]; area += Math::sqrt(f.get_twice_area_squared()); } return area * 0.5f; } // adapted from: // https://stackoverflow.com/questions/6989100/sort-points-in-clockwise-order void Geometry::sort_polygon_winding(Vector &r_verts, bool p_clockwise) { // sort winding order of a (primarily convex) polygon. // It can handle some concave polygons, but not // where a vertex 'goes back on' a previous vertex .. // i.e. it will change the shape in some concave cases. struct ElementComparator { Vector2 center; bool operator()(const Vector2 &a, const Vector2 &b) const { if (a.x - center.x >= 0 && b.x - center.x < 0) { return true; } if (a.x - center.x < 0 && b.x - center.x >= 0) { return false; } if (a.x - center.x == 0 && b.x - center.x == 0) { if (a.y - center.y >= 0 || b.y - center.y >= 0) { return a.y > b.y; } return b.y > a.y; } // compute the cross product of vectors (center -> a) x (center -> b) real_t det = (a.x - center.x) * (b.y - center.y) - (b.x - center.x) * (a.y - center.y); if (det < 0) { return true; } if (det > 0) { return false; } // points a and b are on the same line from the center // check which point is closer to the center real_t d1 = (a.x - center.x) * (a.x - center.x) + (a.y - center.y) * (a.y - center.y); real_t d2 = (b.x - center.x) * (b.x - center.x) + (b.y - center.y) * (b.y - center.y); return d1 > d2; } }; int npoints = r_verts.size(); if (!npoints) { return; } // first calculate center Vector2 center; for (int n = 0; n < npoints; n++) { center += r_verts[n]; } center /= npoints; SortArray sorter; sorter.compare.center = center; sorter.sort(r_verts.ptrw(), r_verts.size()); // if not clockwise, reverse order if (!p_clockwise) { r_verts.invert(); } }