#ifndef RANDOM_PCG_H #define RANDOM_PCG_H /* random_pcg.h */ #include #include "core/math/math_defs.h" #include "core/thirdparty/misc/pcg.h" #if defined(__GNUC__) || (_llvm_has_builtin(__builtin_clz)) #define CLZ32(x) __builtin_clz(x) #elif defined(_MSC_VER) #include "intrin.h" static int __bsr_clz32(uint32_t x) { unsigned long index; _BitScanReverse(&index, x); return 31 - index; } #define CLZ32(x) __bsr_clz32(x) #else #endif #if defined(__GNUC__) || (_llvm_has_builtin(__builtin_ldexp) && _llvm_has_builtin(__builtin_ldexpf)) #define LDEXP(s, e) __builtin_ldexp(s, e) #define LDEXPF(s, e) __builtin_ldexpf(s, e) #else #include "math.h" #define LDEXP(s, e) ldexp(s, e) #define LDEXPF(s, e) ldexp(s, e) #endif class RandomPCG { pcg32_random_t pcg; uint64_t current_seed; // The seed the current generator state started from. uint64_t current_inc; public: static const uint64_t DEFAULT_SEED = 12047754176567800795U; static const uint64_t DEFAULT_INC = PCG_DEFAULT_INC_64; RandomPCG(uint64_t p_seed = DEFAULT_SEED, uint64_t p_inc = DEFAULT_INC); _FORCE_INLINE_ void seed(uint64_t p_seed) { current_seed = p_seed; pcg32_srandom_r(&pcg, current_seed, current_inc); } _FORCE_INLINE_ uint64_t get_seed() { return current_seed; } _FORCE_INLINE_ void set_state(uint64_t p_state) { pcg.state = p_state; } _FORCE_INLINE_ uint64_t get_state() const { return pcg.state; } void randomize(); _FORCE_INLINE_ uint32_t rand() { return pcg32_random_r(&pcg); } _FORCE_INLINE_ uint32_t rand(uint32_t bounds) { return pcg32_boundedrand_r(&pcg, bounds); } // Obtaining floating point numbers in [0, 1] range with "good enough" uniformity. // These functions sample the output of rand() as the fraction part of an infinite binary number, // with some tricks applied to reduce ops and branching: // 1. Instead of shifting to the first 1 and connecting random bits, we simply set the MSB and LSB to 1. // Provided that the RNG is actually uniform bit by bit, this should have the exact same effect. // 2. In order to compensate for exponent info loss, we count zeros from another random number, // and just add that to the initial offset. // This has the same probability as counting and shifting an actual bit stream: 2^-n for n zeroes. // For all numbers above 2^-96 (2^-64 for floats), the functions should be uniform. // However, all numbers below that threshold are floored to 0. // The thresholds are chosen to minimize rand() calls while keeping the numbers within a totally subjective quality standard. // If clz or ldexp isn't available, fall back to bit truncation for performance, sacrificing uniformity. _FORCE_INLINE_ double randd() { #if defined(CLZ32) uint32_t proto_exp_offset = rand(); if (unlikely(proto_exp_offset == 0)) { return 0; } uint64_t significand = (((uint64_t)rand()) << 32) | rand() | 0x8000000000000001U; return LDEXP((double)significand, -64 - CLZ32(proto_exp_offset)); #else #pragma message("RandomPCG::randd - intrinsic clz is not available, falling back to bit truncation") return (double)(((((uint64_t)rand()) << 32) | rand()) & 0x1FFFFFFFFFFFFFU) / (double)0x1FFFFFFFFFFFFFU; #endif } _FORCE_INLINE_ float randf() { #if defined(CLZ32) uint32_t proto_exp_offset = rand(); if (unlikely(proto_exp_offset == 0)) { return 0; } return LDEXPF((float)(rand() | 0x80000001), -32 - CLZ32(proto_exp_offset)); #else #pragma message("RandomPCG::randf - intrinsic clz is not available, falling back to bit truncation") return (float)(rand() & 0xFFFFFF) / (float)0xFFFFFF; #endif } _FORCE_INLINE_ double randfn(double p_mean, double p_deviation) { return p_mean + p_deviation * (cos(Math_TAU * randd()) * sqrt(-2.0 * log(randd()))); // Box-Muller transform } _FORCE_INLINE_ float randfn(float p_mean, float p_deviation) { return p_mean + p_deviation * (cos(Math_TAU * randf()) * sqrt(-2.0 * log(randf()))); // Box-Muller transform } double random(double p_from, double p_to); float random(float p_from, float p_to); real_t randomr(real_t p_from, real_t p_to) { return random(p_from, p_to); } int random(int p_from, int p_to); }; #endif // RANDOM_PCG_H