/*************************************************************************/ /* quat.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "quaternion.h" #include "core/math/basis.h" #include "core/string/print_string.h" real_t Quaternion::angle_to(const Quaternion &p_to) const { real_t d = dot(p_to); // acos does clamping. return Math::acos(d * d * 2 - 1); } // set_euler_xyz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). void Quaternion::set_euler_xyz(const Vector3 &p_euler) { real_t half_a1 = p_euler.x * 0.5f; real_t half_a2 = p_euler.y * 0.5f; real_t half_a3 = p_euler.z * 0.5f; // R = X(a1).Y(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = Math::cos(half_a1); real_t sin_a1 = Math::sin(half_a1); real_t cos_a2 = Math::cos(half_a2); real_t sin_a2 = Math::sin(half_a2); real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); return m.get_euler_xyz(); } // set_euler_yxz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). void Quaternion::set_euler_yxz(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5f; real_t half_a2 = p_euler.x * 0.5f; real_t half_a3 = p_euler.z * 0.5f; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = Math::cos(half_a1); real_t sin_a1 = Math::sin(half_a1); real_t cos_a2 = Math::cos(half_a2); real_t sin_a2 = Math::sin(half_a2); real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_yxz() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif Basis m(*this); return m.get_euler_yxz(); } void Quaternion::operator*=(const Quaternion &p_q) { set(w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y, w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z, w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x, w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z); } Quaternion Quaternion::operator*(const Quaternion &p_q) const { Quaternion r = *this; r *= p_q; return r; } bool Quaternion::is_equal_approx(const Quaternion &p_quat) const { return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); } real_t Quaternion::length() const { return Math::sqrt(length_squared()); } void Quaternion::normalize() { *this /= length(); } Quaternion Quaternion::normalized() const { return *this / length(); } bool Quaternion::is_normalized() const { return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon } Quaternion Quaternion::inverse() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized."); #endif return Quaternion(-x, -y, -z, w); } Quaternion Quaternion::log() const { Quaternion src = *this; Vector3 src_v = src.get_axis() * src.get_angle(); return Quaternion(src_v.x, src_v.y, src_v.z, 0); } Quaternion Quaternion::exp() const { Quaternion src = *this; Vector3 src_v = Vector3(src.x, src.y, src.z); float theta = src_v.length(); if (theta < CMP_EPSILON) { return Quaternion(0, 0, 0, 1); } return Quaternion(src_v.normalized(), theta); } Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif Quaternion to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = dot(p_to); // adjust signs (if necessary) if (cosom < 0) { cosom = -cosom; to1.x = -p_to.x; to1.y = -p_to.y; to1.z = -p_to.z; to1.w = -p_to.w; } else { to1.x = p_to.x; to1.y = p_to.y; to1.z = p_to.z; to1.w = p_to.w; } // calculate coefficients if ((1 - cosom) > (real_t)CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); scale0 = Math::sin((1 - p_weight) * omega) / sinom; scale1 = Math::sin(p_weight * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1 - p_weight; scale1 = p_weight; } // calculate final values return Quaternion( scale0 * x + scale1 * to1.x, scale0 * y + scale1 * to1.y, scale0 * z + scale1 * to1.z, scale0 * w + scale1 * to1.w); } Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif const Quaternion &from = *this; real_t dot = from.dot(p_to); if (Math::absf(dot) > 0.9999f) { return from; } real_t theta = Math::acos(dot), sinT = 1 / Math::sin(theta), newFactor = Math::sin(p_weight * theta) * sinT, invFactor = Math::sin((1 - p_weight) * theta) * sinT; return Quaternion(invFactor * from.x + newFactor * p_to.x, invFactor * from.y + newFactor * p_to.y, invFactor * from.z + newFactor * p_to.z, invFactor * from.w + newFactor * p_to.w); } Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif //the only way to do slerp :| real_t t2 = (1 - p_weight) * p_weight * 2; Quaternion sp = this->slerp(p_b, p_weight); Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight); return sp.slerpni(sq, t2); } Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif Quaternion from_q = *this; Quaternion pre_q = p_pre_a; Quaternion to_q = p_b; Quaternion post_q = p_post_b; // Align flip phases. from_q = Basis(from_q).get_rotation_quaternion(); pre_q = Basis(pre_q).get_rotation_quaternion(); to_q = Basis(to_q).get_rotation_quaternion(); post_q = Basis(post_q).get_rotation_quaternion(); // Flip quaternions to shortest path if necessary. bool flip1 = signbit(from_q.dot(pre_q)); pre_q = flip1 ? -pre_q : pre_q; bool flip2 = signbit(from_q.dot(to_q)); to_q = flip2 ? -to_q : to_q; bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q)); post_q = flip3 ? -post_q : post_q; // Calc by Expmap in from_q space. Quaternion ln_from = Quaternion(0, 0, 0, 0); Quaternion ln_to = (from_q.inverse() * to_q).log(); Quaternion ln_pre = (from_q.inverse() * pre_q).log(); Quaternion ln_post = (from_q.inverse() * post_q).log(); Quaternion ln = Quaternion(0, 0, 0, 0); ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); Quaternion q1 = from_q * ln.exp(); // Calc by Expmap in to_q space. ln_from = (to_q.inverse() * from_q).log(); ln_to = Quaternion(0, 0, 0, 0); ln_pre = (to_q.inverse() * pre_q).log(); ln_post = (to_q.inverse() * post_q).log(); ln = Quaternion(0, 0, 0, 0); ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); Quaternion q2 = to_q * ln.exp(); // To cancel error made by Expmap ambiguity, do blends. return q1.slerp(q2, p_weight); } Vector3 Quaternion::get_axis() const { if (Math::abs(w) > 1 - CMP_EPSILON) { return Vector3(x, y, z); } real_t r = ((real_t)1) / Math::sqrt(1 - w * w); return Vector3(x * r, y * r, z * r); } float Quaternion::get_angle() const { return 2 * Math::acos(w); } Quaternion::operator String() const { return "(" + String::num_real(x) + ", " + String::num_real(y) + ", " + String::num_real(z) + ", " + String::num_real(w) + ")"; } void Quaternion::set_axis_angle(const Vector3 &axis, const real_t &angle) { #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized."); #endif real_t d = axis.length(); if (d == 0) { set(0, 0, 0, 0); } else { real_t sin_angle = Math::sin(angle * 0.5f); real_t cos_angle = Math::cos(angle * 0.5f); real_t s = sin_angle / d; set(axis.x * s, axis.y * s, axis.z * s, cos_angle); } }