pandemonium_engine/doc/classes/Transform.xml

298 lines
12 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform" version="4.1">
<brief_description>
3D transformation (3×4 matrix).
</brief_description>
<description>
3×4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column).
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math tutorial index">$DOCS_URL/tutorials/math/index.md</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.md</link>
<link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.md</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods>
<method name="Transform">
<return type="Transform" />
<argument index="0" name="from" type="Transform2D" />
<description>
Constructs a Transform from a [Transform2D].
</description>
</method>
<method name="Transform">
<return type="Transform" />
<argument index="0" name="from" type="Basis" />
<description>
Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="Transform">
<return type="Transform" />
<argument index="0" name="from" type="Quaternion" />
<description>
Constructs a Transform from a [Quaternion]. The origin will be [code]Vector3(0, 0, 0)[/code].
</description>
</method>
<method name="Transform">
<return type="Transform" />
<argument index="0" name="basis" type="Basis" />
<argument index="1" name="origin" type="Vector3" />
<description>
Constructs a Transform from a [Basis] and [Vector3].
</description>
</method>
<method name="Transform">
<return type="Transform" />
<argument index="0" name="x_axis" type="Vector3" />
<argument index="1" name="y_axis" type="Vector3" />
<argument index="2" name="z_axis" type="Vector3" />
<argument index="3" name="origin" type="Vector3" />
<description>
Constructs a Transform from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled).
</description>
</method>
<method name="affine_inverse">
<return type="Transform" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="affine_invert">
<description>
</description>
</method>
<method name="get_basis">
<return type="Basis" />
<description>
</description>
</method>
<method name="get_origin">
<return type="Vector3" />
<description>
</description>
</method>
<method name="interpolate_with">
<return type="Transform" />
<argument index="0" name="transform" type="Transform" />
<argument index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse">
<return type="Transform" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
<method name="invert">
<description>
</description>
</method>
<method name="is_equal_approx">
<return type="bool" />
<argument index="0" name="transform" type="Transform" />
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name="looking_at">
<return type="Transform" />
<argument index="0" name="target" type="Vector3" />
<argument index="1" name="up" type="Vector3" />
<description>
Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
Operations take place in global space.
</description>
</method>
<method name="orthogonalize">
<description>
</description>
</method>
<method name="orthogonalized">
<return type="Transform" />
<description>
</description>
</method>
<method name="orthonormalize">
<description>
</description>
</method>
<method name="orthonormalized">
<return type="Transform" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name="rotate">
<argument index="0" name="axis" type="Vector3" />
<argument index="1" name="phi" type="float" />
<description>
</description>
</method>
<method name="rotate_basis">
<argument index="0" name="axis" type="Vector3" />
<argument index="1" name="phi" type="float" />
<description>
</description>
</method>
<method name="rotate_local">
<argument index="0" name="axis" type="Vector3" />
<argument index="1" name="phi" type="float" />
<description>
</description>
</method>
<method name="rotated">
<return type="Transform" />
<argument index="0" name="axis" type="Vector3" />
<argument index="1" name="phi" type="float" />
<description>
Returns a copy of the transform rotated around the given [code]axis[/code] by the given [code]angle[/code] (in radians).
The [code]axis[/code] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="rotated_local">
<return type="Transform" />
<argument index="0" name="axis" type="Vector3" />
<argument index="1" name="phi" type="float" />
<description>
Returns a copy of the transform rotated around the given [code]axis[/code] by the given [code]angle[/code] (in radians).
The [code]axis[/code] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="scale">
<argument index="0" name="scale" type="Vector3" />
<description>
</description>
</method>
<method name="scale_basis">
<argument index="0" name="scale" type="Vector3" />
<description>
</description>
</method>
<method name="scaled">
<return type="Transform" />
<argument index="0" name="scale" type="Vector3" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="scaled_local">
<return type="Transform" />
<argument index="0" name="scale" type="Vector3" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="set_basis">
<argument index="0" name="basis" type="Basis" />
<description>
</description>
</method>
<method name="set_look_at">
<argument index="0" name="eye" type="Vector3" />
<argument index="1" name="target" type="Vector3" />
<argument index="2" name="up" type="Vector3" />
<description>
</description>
</method>
<method name="set_origin">
<argument index="0" name="origin" type="Vector3" />
<description>
</description>
</method>
<method name="spherical_interpolate_with">
<return type="Transform" />
<argument index="0" name="transform" type="Transform" />
<argument index="1" name="c" type="float" />
<description>
</description>
</method>
<method name="translate_localr">
<argument index="0" name="tx" type="float" />
<argument index="1" name="ty" type="float" />
<argument index="2" name="tz" type="float" />
<description>
</description>
</method>
<method name="translate_localv">
<argument index="0" name="scale" type="Vector3" />
<description>
</description>
</method>
<method name="translated">
<return type="Transform" />
<argument index="0" name="translation" type="Vector3" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="translated_local">
<return type="Transform" />
<argument index="0" name="offset" type="Vector3" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="xform">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Inverse-transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method.
</description>
</method>
</methods>
<members>
<member name="basis" type="Basis" setter="" getter="" default="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="origin" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 0 )">
The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the YZ plane.
</constant>
<constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the XZ plane.
</constant>
<constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the XY plane.
</constant>
</constants>
</class>