mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-25 18:39:18 +01:00
133 lines
3.6 KiB
C++
133 lines
3.6 KiB
C++
#include "wave.h"
|
|
|
|
#include <limits>
|
|
|
|
namespace {
|
|
|
|
// Return distribution * log(distribution).
|
|
Vector<double> get_plogp(const Vector<double> &distribution) {
|
|
Vector<double> plogp;
|
|
|
|
for (uint32_t i = 0; i < distribution.size(); i++) {
|
|
plogp.push_back(distribution[i] * log(distribution[i]));
|
|
}
|
|
|
|
return plogp;
|
|
}
|
|
|
|
// Return min(v) / 2.
|
|
double get_min_abs_half(const Vector<double> &v) {
|
|
double min_abs_half = std::numeric_limits<double>::infinity();
|
|
|
|
for (uint32_t i = 0; i < v.size(); i++) {
|
|
min_abs_half = std::min(min_abs_half, std::abs(v[i] / 2.0));
|
|
}
|
|
|
|
return min_abs_half;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Wave::Wave(uint32_t height, uint32_t width,
|
|
const Vector<double> &patterns_frequencies) :
|
|
patterns_frequencies(patterns_frequencies),
|
|
plogp_patterns_frequencies(get_plogp(patterns_frequencies)),
|
|
min_abs_half_plogp(get_min_abs_half(plogp_patterns_frequencies)),
|
|
is_impossible(false),
|
|
nb_patterns(patterns_frequencies.size()),
|
|
data(width * height, nb_patterns, 1),
|
|
width(width),
|
|
height(height),
|
|
size(height * width) {
|
|
|
|
// Initialize the memoisation of entropy.
|
|
double base_entropy = 0;
|
|
double base_s = 0;
|
|
|
|
for (uint32_t i = 0; i < nb_patterns; i++) {
|
|
base_entropy += plogp_patterns_frequencies[i];
|
|
base_s += patterns_frequencies[i];
|
|
}
|
|
|
|
double log_base_s = log(base_s);
|
|
double entropy_base = log_base_s - base_entropy / base_s;
|
|
|
|
memoisation.plogp_sum.resize(width * height);
|
|
memoisation.plogp_sum.fill(base_entropy);
|
|
|
|
memoisation.sum.resize(width * height);
|
|
memoisation.sum.fill(base_s);
|
|
|
|
memoisation.log_sum.resize(width * height);
|
|
memoisation.log_sum.fill(log_base_s);
|
|
|
|
memoisation.nb_patterns.resize(width * height);
|
|
memoisation.nb_patterns.fill(static_cast<uint32_t>(nb_patterns));
|
|
|
|
memoisation.entropy.resize(width * height);
|
|
memoisation.entropy.fill(entropy_base);
|
|
}
|
|
|
|
void Wave::set(uint32_t index, uint32_t pattern, bool value) {
|
|
bool old_value = data.get(index, pattern);
|
|
|
|
// If the value isn't changed, nothing needs to be done.
|
|
if (old_value == value) {
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the memoisation should be updated.
|
|
data.get(index, pattern) = value;
|
|
memoisation.plogp_sum.write[index] -= plogp_patterns_frequencies[pattern];
|
|
memoisation.sum.write[index] -= patterns_frequencies[pattern];
|
|
memoisation.log_sum.write[index] = log(memoisation.sum[index]);
|
|
memoisation.nb_patterns.write[index]--;
|
|
memoisation.entropy.write[index] = memoisation.log_sum[index] - memoisation.plogp_sum[index] / memoisation.sum[index];
|
|
|
|
// If there is no patterns possible in the cell, then there is a contradiction.
|
|
if (memoisation.nb_patterns[index] == 0) {
|
|
is_impossible = true;
|
|
}
|
|
}
|
|
|
|
int Wave::get_min_entropy(std::minstd_rand &gen) const {
|
|
if (is_impossible) {
|
|
return -2;
|
|
}
|
|
|
|
std::uniform_real_distribution<> dis(0, min_abs_half_plogp);
|
|
|
|
// The minimum entropy (plus a small noise)
|
|
double min = std::numeric_limits<double>::infinity();
|
|
int argmin = -1;
|
|
|
|
for (uint32_t i = 0; i < size; i++) {
|
|
// If the cell is decided, we do not compute the entropy (which is equal
|
|
// to 0).
|
|
double nb_patterns_local = memoisation.nb_patterns[i];
|
|
|
|
if (nb_patterns_local == 1) {
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we take the memoised entropy.
|
|
double entropy = memoisation.entropy[i];
|
|
|
|
// We first check if the entropy is less than the minimum.
|
|
// This is important to reduce noise computation (which is not
|
|
// negligible).
|
|
if (entropy <= min) {
|
|
// Then, we add noise to decide randomly which will be chosen.
|
|
// noise is smaller than the smallest p * log(p), so the minimum entropy
|
|
// will always be chosen.
|
|
double noise = dis(gen);
|
|
if (entropy + noise < min) {
|
|
min = entropy + noise;
|
|
argmin = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return argmin;
|
|
}
|