pandemonium_engine/modules/mesh_utils/simplify.h

1335 lines
33 KiB
C++

#ifndef FAST_QUADRATIC_MESH_SIMPLIFIER_SIMPLIFY_H
#define FAST_QUADRATIC_MESH_SIMPLIFIER_SIMPLIFY_H
/*************************************************************************/
/* simplify.h */
/*************************************************************************/
/* This file is part of: */
/* PANDEMONIUM ENGINE */
/* https://github.com/Relintai/pandemonium_engine */
/*************************************************************************/
/* Copyright (c) 2022-present Péter Magyar. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
/////////////////////////////////////////////
//
// Mesh Simplification Tutorial
//
// (C) by Sven Forstmann in 2014
//
// License : MIT
// http://opensource.org/licenses/MIT
//
// https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
//
// 5/2016: Chris Rorden created minimal version for OSX/Linux/Windows compile
// Contains some improvements from https://github.com/Whinarn/MeshDecimator
// Copyright (c) 2017-2018 Mattias Edlund
// (C) by Péter Magyar in 2020
#include "core/string/ustring.h"
#include "core/variant/array.h"
#include "core/math/vector2.h"
#include "core/math/vector3.h"
#include "scene/resources/mesh/mesh.h"
#include <float.h> //FLT_EPSILON, DBL_EPSILON
#include <limits.h>
#include <algorithm>
#include <map>
#include <vector>
#include "servers/rendering_server.h"
namespace Simplify {
struct vector3 {
double x, y, z;
};
struct vec3f {
double x, y, z;
inline vec3f(void) {}
//inline vec3f operator =( vector3 a )
// { vec3f b ; b.x = a.x; b.y = a.y; b.z = a.z; return b;}
inline vec3f(vector3 a) {
x = a.x;
y = a.y;
z = a.z;
}
inline vec3f(const double X, const double Y, const double Z) {
x = X;
y = Y;
z = Z;
}
inline vec3f operator+(const vec3f &a) const { return vec3f(x + a.x, y + a.y, z + a.z); }
inline vec3f operator+=(const vec3f &a) const { return vec3f(x + a.x, y + a.y, z + a.z); }
inline vec3f operator*(const double a) const { return vec3f(x * a, y * a, z * a); }
inline vec3f operator*(const vec3f a) const { return vec3f(x * a.x, y * a.y, z * a.z); }
inline vec3f v3() const { return vec3f(x, y, z); }
inline vec3f operator=(const vector3 a) {
x = a.x;
y = a.y;
z = a.z;
return *this;
}
inline vec3f operator=(const vec3f a) {
x = a.x;
y = a.y;
z = a.z;
return *this;
}
inline vec3f operator/(const vec3f a) const { return vec3f(x / a.x, y / a.y, z / a.z); }
inline vec3f operator-(const vec3f &a) const { return vec3f(x - a.x, y - a.y, z - a.z); }
inline vec3f operator/(const double a) const { return vec3f(x / a, y / a, z / a); }
inline double dot(const vec3f &a) const { return a.x * x + a.y * y + a.z * z; }
inline vec3f cross(const vec3f &a, const vec3f &b) {
x = a.y * b.z - a.z * b.y;
y = a.z * b.x - a.x * b.z;
z = a.x * b.y - a.y * b.x;
return *this;
}
inline double angle(const vec3f &v) {
vec3f a = v, b = *this;
double dot = v.x * x + v.y * y + v.z * z;
double len = a.length() * b.length();
if (len == 0)
len = 0.00001f;
double input = dot / len;
if (input < -1)
input = -1;
if (input > 1)
input = 1;
return (double)acos(input);
}
inline double angle2(const vec3f &v, const vec3f &w) {
vec3f a = v, b = *this;
double dot = a.x * b.x + a.y * b.y + a.z * b.z;
double len = a.length() * b.length();
if (len == 0)
len = 1;
vec3f plane;
plane.cross(b, w);
if (plane.x * a.x + plane.y * a.y + plane.z * a.z > 0)
return (double)-acos(dot / len);
return (double)acos(dot / len);
}
inline vec3f rot_x(double a) {
double yy = cos(a) * y + sin(a) * z;
double zz = cos(a) * z - sin(a) * y;
y = yy;
z = zz;
return *this;
}
inline vec3f rot_y(double a) {
double xx = cos(-a) * x + sin(-a) * z;
double zz = cos(-a) * z - sin(-a) * x;
x = xx;
z = zz;
return *this;
}
inline void clamp(double min, double max) {
if (x < min)
x = min;
if (y < min)
y = min;
if (z < min)
z = min;
if (x > max)
x = max;
if (y > max)
y = max;
if (z > max)
z = max;
}
inline vec3f rot_z(double a) {
double yy = cos(a) * y + sin(a) * x;
double xx = cos(a) * x - sin(a) * y;
y = yy;
x = xx;
return *this;
}
inline vec3f invert() {
x = -x;
y = -y;
z = -z;
return *this;
}
inline vec3f frac() {
return vec3f(
x - double(int(x)),
y - double(int(y)),
z - double(int(z)));
}
inline vec3f integer() {
return vec3f(
double(int(x)),
double(int(y)),
double(int(z)));
}
inline double length() const {
return (double)sqrt(x * x + y * y + z * z);
}
inline vec3f normalize(double desired_length = 1) {
double square = sqrt(x * x + y * y + z * z);
/*
if (square <= 0.00001f )
{
x=1;y=0;z=0;
return *this;
}*/
//double len = desired_length / square;
x /= square;
y /= square;
z /= square;
return *this;
}
static vec3f normalize(vec3f a);
static void random_init();
static double random_double();
static vec3f random();
static int random_number;
double random_double_01(double a) {
double rnf = a * 14.434252 + a * 364.2343 + a * 4213.45352 + a * 2341.43255 + a * 254341.43535 + a * 223454341.3523534245 + 23453.423412;
int rni = ((int)rnf) % 100000;
return double(rni) / (100000.0f - 1.0f);
}
vec3f random01_fxyz() {
x = (double)random_double_01(x);
y = (double)random_double_01(y);
z = (double)random_double_01(z);
return *this;
}
};
static vec3f barycentric(const vec3f &p, const vec3f &a, const vec3f &b, const vec3f &c) {
vec3f v0 = b - a;
vec3f v1 = c - a;
vec3f v2 = p - a;
double d00 = v0.dot(v0);
double d01 = v0.dot(v1);
double d11 = v1.dot(v1);
double d20 = v2.dot(v0);
double d21 = v2.dot(v1);
double denom = d00 * d11 - d01 * d01;
double v = (d11 * d20 - d01 * d21) / denom;
double w = (d00 * d21 - d01 * d20) / denom;
double u = 1.0 - v - w;
return vec3f(u, v, w);
}
static vec3f interpolate(const vec3f &p, const vec3f &a, const vec3f &b, const vec3f &c, const vec3f attrs[3]) {
vec3f bary = barycentric(p, a, b, c);
vec3f out = vec3f(0, 0, 0);
out = out + attrs[0] * bary.x;
out = out + attrs[1] * bary.y;
out = out + attrs[2] * bary.z;
return out;
}
static double min(double v1, double v2) {
return fmin(v1, v2);
}
class SymetricMatrix {
public:
// Constructor
SymetricMatrix(double c = 0) {
for (unsigned int i = 0; i < 10; ++i)
m[i] = c;
}
SymetricMatrix(double m11, double m12, double m13, double m14,
double m22, double m23, double m24,
double m33, double m34,
double m44) {
m[0] = m11;
m[1] = m12;
m[2] = m13;
m[3] = m14;
m[4] = m22;
m[5] = m23;
m[6] = m24;
m[7] = m33;
m[8] = m34;
m[9] = m44;
}
// Make plane
SymetricMatrix(double a, double b, double c, double d) {
m[0] = a * a;
m[1] = a * b;
m[2] = a * c;
m[3] = a * d;
m[4] = b * b;
m[5] = b * c;
m[6] = b * d;
m[7] = c * c;
m[8] = c * d;
m[9] = d * d;
}
double operator[](int c) const { return m[c]; }
// Determinant
double det(int a11, int a12, int a13,
int a21, int a22, int a23,
int a31, int a32, int a33) {
double det = m[a11] * m[a22] * m[a33] + m[a13] * m[a21] * m[a32] + m[a12] * m[a23] * m[a31] - m[a13] * m[a22] * m[a31] - m[a11] * m[a23] * m[a32] - m[a12] * m[a21] * m[a33];
return det;
}
const SymetricMatrix operator+(const SymetricMatrix &n) const {
return SymetricMatrix(m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3],
m[4] + n[4], m[5] + n[5], m[6] + n[6],
m[7] + n[7], m[8] + n[8],
m[9] + n[9]);
}
SymetricMatrix &operator+=(const SymetricMatrix &n) {
m[0] += n[0];
m[1] += n[1];
m[2] += n[2];
m[3] += n[3];
m[4] += n[4];
m[5] += n[5];
m[6] += n[6];
m[7] += n[7];
m[8] += n[8];
m[9] += n[9];
return *this;
}
double m[10];
};
///////////////////////////////////////////
struct BorderVertex {
int index;
int hash;
};
static bool compare_border_vertex(const BorderVertex &i1, const BorderVertex &i2) {
return (i1.hash < i2.hash);
}
class FQMS {
public:
struct Triangle {
int v[3];
double err[4];
int deleted, dirty;
vec3f n;
vec3f uvs[3];
vec3f uv2s[3];
Color color[3];
int material;
};
struct Vertex {
vec3f p;
int tstart, tcount;
SymetricMatrix q;
int border;
bool seam;
bool foldover;
};
struct Ref {
int tid, tvertex;
};
std::vector<Triangle> triangles;
std::vector<Vertex> vertices;
std::vector<Ref> refs;
int _max_iteration_count;
int _max_lossless_iteration_count;
bool _enable_smart_link;
bool _preserve_border_dges;
bool _preserve_uv_seam_edges;
bool _preserve_uv_foldover_edges;
int _format;
double _vertex_link_distance;
// Helper functions
//
// Main simplification function
//
// target_count : target nr. of triangles
// aggressiveness : sharpness to increase the threshold.
// 5..8 are good numbers
// more iterations yield higher quality
//
void simplify_mesh(int target_count, double aggressiveness = 7, bool verbose = false) {
ERR_FAIL_COND_MSG(_enable_smart_link, "FastQuadraticMeshSimplifier: enable_smart_link setting is not yet supported!");
// init
for (unsigned int i = 0; i < triangles.size(); ++i) {
triangles[i].deleted = 0;
}
// main iteration loop
int deleted_triangles = 0;
std::vector<int> deleted0, deleted1;
int triangle_count = triangles.size();
for (int iteration = 0; iteration < _max_iteration_count; iteration++) {
if (triangle_count - deleted_triangles <= target_count)
break;
// update mesh once in a while
if (iteration % 5 == 0) {
update_mesh(iteration);
}
// clear dirty flag
for (unsigned int i = 0; i < triangles.size(); ++i) {
triangles[i].dirty = 0;
}
//
// All triangles with edges below the threshold will be removed
//
// The following numbers works well for most models.
// If it does not, try to adjust the 3 parameters
//
double threshold = 0.000000001 * pow(double(iteration + 3), aggressiveness);
// target number of triangles reached ? Then break
if ((verbose) && (iteration % 5 == 0)) {
print_line("iteration " + String::num(iteration) + " - triangles " + String::num(triangle_count - deleted_triangles) + " threshold " + String::num(threshold));
}
// remove vertices & mark deleted triangles
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle &t = triangles[i];
if (t.err[3] > threshold)
continue;
if (t.deleted)
continue;
if (t.dirty)
continue;
for (int j = 0; j < 3; ++j) {
if (t.err[j] < threshold) {
int i0 = t.v[j];
Vertex &v0 = vertices[i0];
int i1 = t.v[(j + 1) % 3];
Vertex &v1 = vertices[i1];
// Border check
if (v0.border != v1.border)
continue;
else if (_preserve_border_dges && v0.border)
continue;
//if (v0.border || v1.border) continue;
// Compute vertex to collapse to
vec3f p;
calculate_error(i0, i1, p);
deleted0.resize(v0.tcount); // normals temporarily
deleted1.resize(v1.tcount); // normals temporarily
// don't remove if flipped
if (flipped(p, i0, i1, v0, v1, deleted0))
continue;
if (flipped(p, i1, i0, v1, v0, deleted1))
continue;
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV) != 0) {
update_uvs(i0, v0, p, deleted0);
update_uvs(i0, v1, p, deleted1);
}
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV2) != 0) {
update_uv2s(i0, v0, p, deleted0);
update_uv2s(i0, v1, p, deleted1);
}
// not flipped, so remove edge
v0.p = p;
v0.q = v1.q + v0.q;
int tstart = refs.size();
update_triangles(i0, v0, deleted0, deleted_triangles);
update_triangles(i0, v1, deleted1, deleted_triangles);
int tcount = refs.size() - tstart;
if (tcount <= v0.tcount) {
// save ram
if (tcount)
memcpy(&refs[v0.tstart], &refs[tstart], tcount * sizeof(Ref));
} else {
// append
v0.tstart = tstart;
}
v0.tcount = tcount;
break;
}
}
// done?
if (triangle_count - deleted_triangles <= target_count)
break;
}
}
// clean up mesh
compact_mesh();
} //simplify_mesh()
void simplify_mesh_lossless(bool verbose = false) {
ERR_FAIL_COND_MSG(_enable_smart_link, "FastQuadraticMeshSimplifier: enable_smart_link setting is not yet supported!");
// init
for (unsigned int i = 0; i < triangles.size(); ++i)
triangles[i].deleted = 0;
// main iteration loop
int deleted_triangles = 0;
std::vector<int> deleted0, deleted1;
//unsigned int triangle_count = triangles.size();
for (int iteration = 0; iteration < _max_lossless_iteration_count; iteration++) {
// update mesh constantly
update_mesh(iteration);
// clear dirty flag
for (unsigned int i = 0; i < triangles.size(); ++i)
triangles[i].dirty = 0;
//
// All triangles with edges below the threshold will be removed
//
// The following numbers works well for most models.
// If it does not, try to adjust the 3 parameters
//
double threshold = DBL_EPSILON; //1.0E-3 EPS;
if (verbose) {
print_line("lossless iteration " + String::num(iteration));
}
// remove vertices & mark deleted triangles
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle &t = triangles[i];
if (t.err[3] > threshold)
continue;
if (t.deleted)
continue;
if (t.dirty)
continue;
for (int j = 0; j < 3; ++j) {
if (t.err[j] < threshold) {
int i0 = t.v[j];
Vertex &v0 = vertices[i0];
int i1 = t.v[(j + 1) % 3];
Vertex &v1 = vertices[i1];
// Border check
if (v0.border != v1.border)
continue;
// Compute vertex to collapse to
vec3f p;
calculate_error(i0, i1, p);
deleted0.resize(v0.tcount); // normals temporarily
deleted1.resize(v1.tcount); // normals temporarily
// don't remove if flipped
if (flipped(p, i0, i1, v0, v1, deleted0))
continue;
if (flipped(p, i1, i0, v1, v0, deleted1))
continue;
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV) != 0) {
update_uvs(i0, v0, p, deleted0);
update_uvs(i0, v1, p, deleted1);
}
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV2) != 0) {
update_uv2s(i0, v0, p, deleted0);
update_uv2s(i0, v1, p, deleted1);
}
// not flipped, so remove edge
v0.p = p;
v0.q = v1.q + v0.q;
int tstart = refs.size();
update_triangles(i0, v0, deleted0, deleted_triangles);
update_triangles(i0, v1, deleted1, deleted_triangles);
int tcount = refs.size() - tstart;
if (tcount <= v0.tcount) {
// save ram
if (tcount)
memcpy(&refs[v0.tstart], &refs[tstart], tcount * sizeof(Ref));
} else {
// append
v0.tstart = tstart;
}
v0.tcount = tcount;
break;
}
}
}
if (deleted_triangles <= 0)
break;
deleted_triangles = 0;
} //for each iteration
// clean up mesh
compact_mesh();
} //simplify_mesh_lossless()
// Check if a triangle flips when this edge is removed
bool flipped(vec3f p, int i0, int i1, Vertex &v0, Vertex &v1, std::vector<int> &deleted) {
for (int k = 0; k < v0.tcount; ++k) {
Triangle &t = triangles[refs[v0.tstart + k].tid];
if (t.deleted)
continue;
int s = refs[v0.tstart + k].tvertex;
int id1 = t.v[(s + 1) % 3];
int id2 = t.v[(s + 2) % 3];
if (id1 == i1 || id2 == i1) // delete ?
{
deleted[k] = 1;
continue;
}
vec3f d1 = vertices[id1].p - p;
d1.normalize();
vec3f d2 = vertices[id2].p - p;
d2.normalize();
if (fabs(d1.dot(d2)) > 0.999)
return true;
vec3f n;
n.cross(d1, d2);
n.normalize();
deleted[k] = 0;
if (n.dot(t.n) < 0.2)
return true;
}
return false;
}
// update_uvs
void update_uvs(int i0, const Vertex &v, const vec3f &p, std::vector<int> &deleted) {
for (int k = 0; k < v.tcount; ++k) {
Ref &r = refs[v.tstart + k];
Triangle &t = triangles[r.tid];
if (t.deleted)
continue;
if (deleted[k])
continue;
vec3f p1 = vertices[t.v[0]].p;
vec3f p2 = vertices[t.v[1]].p;
vec3f p3 = vertices[t.v[2]].p;
t.uvs[r.tvertex] = interpolate(p, p1, p2, p3, t.uvs);
}
}
void update_uv2s(int i0, const Vertex &v, const vec3f &p, std::vector<int> &deleted) {
for (int k = 0; k < v.tcount; ++k) {
Ref &r = refs[v.tstart + k];
Triangle &t = triangles[r.tid];
if (t.deleted)
continue;
if (deleted[k])
continue;
vec3f p1 = vertices[t.v[0]].p;
vec3f p2 = vertices[t.v[1]].p;
vec3f p3 = vertices[t.v[2]].p;
t.uv2s[r.tvertex] = interpolate(p, p1, p2, p3, t.uv2s);
}
}
// Update triangle connections and edge error after a edge is collapsed
void update_triangles(int i0, Vertex &v, std::vector<int> &deleted, int &deleted_triangles) {
vec3f p;
for (int k = 0; k < v.tcount; ++k) {
Ref &r = refs[v.tstart + k];
Triangle &t = triangles[r.tid];
if (t.deleted)
continue;
if (deleted[k]) {
t.deleted = 1;
deleted_triangles++;
continue;
}
t.v[r.tvertex] = i0;
t.dirty = 1;
t.err[0] = calculate_error(t.v[0], t.v[1], p);
t.err[1] = calculate_error(t.v[1], t.v[2], p);
t.err[2] = calculate_error(t.v[2], t.v[0], p);
t.err[3] = min(t.err[0], min(t.err[1], t.err[2]));
refs.push_back(r);
}
}
// compact triangles, compute edge error and build reference list
void update_mesh(int iteration) {
if (iteration > 0) // compact triangles
{
int dst = 0;
for (unsigned int i = 0; i < triangles.size(); ++i) {
if (!triangles[i].deleted) {
triangles[dst++] = triangles[i];
}
}
triangles.resize(dst);
}
//
// Init Quadrics by Plane & Edge Errors
//
// required at the beginning ( iteration == 0 )
// recomputing during the simplification is not required,
// but mostly improves the result for closed meshes
//
if (iteration == 0) {
for (unsigned int i = 0; i < vertices.size(); ++i) {
vertices[i].q = SymetricMatrix(0.0);
}
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle &t = triangles[i];
vec3f n, p[3];
for (int j = 0; j < 3; ++j) {
p[j] = vertices[t.v[j]].p;
}
n.cross(p[1] - p[0], p[2] - p[0]);
n.normalize();
t.n = n;
for (int j = 0; j < 3; ++j) {
vertices[t.v[j]].q = vertices[t.v[j]].q + SymetricMatrix(n.x, n.y, n.z, -n.dot(p[0]));
}
}
for (unsigned int i = 0; i < triangles.size(); ++i) {
// Calc Edge Error
Triangle &t = triangles[i];
vec3f p;
for (int j = 0; j < 3; ++j) {
t.err[j] = calculate_error(t.v[j], t.v[(j + 1) % 3], p);
}
t.err[3] = min(t.err[0], min(t.err[1], t.err[2]));
}
}
// Init Reference ID list
for (unsigned int i = 0; i < vertices.size(); ++i) {
vertices[i].tstart = 0;
vertices[i].tcount = 0;
}
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle &t = triangles[i];
for (int j = 0; j < 3; ++j) {
vertices[t.v[j]].tcount++;
}
}
int tstart = 0;
for (unsigned int i = 0; i < vertices.size(); ++i) {
Vertex &v = vertices[i];
v.tstart = tstart;
tstart += v.tcount;
v.tcount = 0;
}
// Write References
refs.resize(triangles.size() * 3);
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle &t = triangles[i];
for (unsigned int j = 0; j < 3; ++j) {
Vertex &v = vertices[t.v[j]];
refs[v.tstart + v.tcount].tid = i;
refs[v.tstart + v.tcount].tvertex = j;
v.tcount++;
}
}
// Identify boundary : vertices[].border=0,1
if (iteration == 0) {
std::vector<int> vcount, vids;
for (unsigned int i = 0; i < vertices.size(); ++i) {
Vertex &v = vertices[i];
v.border = 0;
v.seam = false;
v.foldover = false;
}
//int border_vertex_count = 0;
double border_min_x = DBL_MIN;
double border_max_x = DBL_MAX;
for (unsigned int i = 0; i < vertices.size(); ++i) {
Vertex &v = vertices[i];
vcount.clear();
vids.clear();
for (int j = 0; j < v.tcount; ++j) {
int kt = refs[v.tstart + j].tid;
Triangle &t = triangles[kt];
for (int k = 0; k < 3; ++k) {
unsigned int ofs = 0;
int id = t.v[k];
while (ofs < vcount.size()) {
if (vids[ofs] == id)
break;
ofs++;
}
if (ofs == vcount.size()) {
vcount.push_back(1);
vids.push_back(id);
} else {
vcount[ofs]++;
}
}
}
for (unsigned int j = 0; j < vcount.size(); ++j) {
if (vcount[j] == 1) {
Vertex &vv = vertices[vids[j]];
vv.border = 1;
//++border_vertex_count;
if (_enable_smart_link) {
if (vv.p.x < border_min_x)
border_min_x = vv.p.x;
if (vv.p.x < border_max_x)
border_max_x = vv.p.x;
}
}
}
if (_enable_smart_link) {
std::vector<BorderVertex> border_vertices;
double border_area_width = border_max_x - border_min_x;
for (unsigned int j = 0; j < vertices.size(); j++) {
Vertex &vj = vertices[i];
if (v.border) {
BorderVertex bv;
bv.hash = static_cast<int>(((((vj.p.x - border_min_x) / border_area_width) * 2.0) - 1.0) * INT_MAX);
bv.index = j;
border_vertices.push_back(bv);
}
}
std::sort(border_vertices.begin(), border_vertices.end(), compare_border_vertex);
// Calculate the maximum hash distance based on the maximum vertex link distance
int tdst = static_cast<int>((_vertex_link_distance / border_area_width) * INT_MAX);
int hash_max_distance = MAX(tdst, 1);
// Then find identical border vertices and bind them together as one
for (unsigned int j = 0; j < border_vertices.size(); ++j) {
BorderVertex &bv = border_vertices[j];
if (bv.index == -1)
continue;
//var myPoint = vertices[myIndex].p;
for (unsigned int k = i + 1; k < border_vertices.size(); ++k) {
BorderVertex &obv = border_vertices[k];
//int otherIndex = obv.index;
//var otherPoint = vertices[otherIndex].p;
if (obv.index == -1)
continue;
else if ((obv.hash - bv.hash) > hash_max_distance) // There is no point to continue beyond this point
break;
Vertex &vj = vertices[j];
Vertex &ov = vertices[k];
double sqr_x = ((vj.p.x - ov.p.x) * (vj.p.x - ov.p.x));
double sqr_y = ((vj.p.y - ov.p.y) * (vj.p.y - ov.p.y));
double sqr_z = ((vj.p.z - ov.p.z) * (vj.p.z - ov.p.z));
double sqr_magnitude = sqr_x + sqr_y + sqr_z;
if (sqr_magnitude <= _vertex_link_distance) {
obv.index = -1; // NOTE: This makes sure that the "other" vertex is not processed again
vj.border = false;
ov.border = false;
/*
if (AreUVsTheSame(0, myIndex, otherIndex)) {
vertices[myIndex].foldover = true;
vertices[otherIndex].foldover = true;
} else {
vertices[myIndex].seam = true;
vertices[otherIndex].seam = true;
}
int other_triangle_count = ov.tcount;
int other_triangle_start = ov.tstart;
for (int k = 0; k < other_triangle_count; k++) {
Ref &r = refs[other_triangle_start + k];
Triangle &t = triangles[r.tid];
t.v[r.tvertex] = myIndex;
}
*/
}
}
}
// Update the references again
//update_references();
}
}
}
}
// Finally compact mesh before exiting
void compact_mesh() {
int dst = 0;
for (unsigned int i = 0; i < vertices.size(); ++i) {
vertices[i].tcount = 0;
}
for (unsigned int i = 0; i < triangles.size(); ++i) {
if (!triangles[i].deleted) {
Triangle &t = triangles[i];
triangles[dst++] = t;
for (int j = 0; j < 3; ++j) {
vertices[t.v[j]].tcount = 1;
}
}
}
triangles.resize(dst);
dst = 0;
for (unsigned int i = 0; i < vertices.size(); ++i) {
if (vertices[i].tcount) {
vertices[i].tstart = dst;
vertices[dst].p = vertices[i].p;
dst++;
}
}
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle &t = triangles[i];
for (int j = 0; j < 3; ++j) {
t.v[j] = vertices[t.v[j]].tstart;
}
}
vertices.resize(dst);
}
// Error between vertex and Quadric
double vertex_error(SymetricMatrix q, double x, double y, double z) {
return q[0] * x * x + 2 * q[1] * x * y + 2 * q[2] * x * z + 2 * q[3] * x + q[4] * y * y + 2 * q[5] * y * z + 2 * q[6] * y + q[7] * z * z + 2 * q[8] * z + q[9];
}
// Error for one edge
double calculate_error(int id_v1, int id_v2, vec3f &p_result) {
// compute interpolated vertex
SymetricMatrix q = vertices[id_v1].q + vertices[id_v2].q;
bool border = vertices[id_v1].border & vertices[id_v2].border;
double error = 0;
double det = q.det(0, 1, 2, 1, 4, 5, 2, 5, 7);
if (det != 0 && !border) {
// q_delta is invertible
p_result.x = -1 / det * (q.det(1, 2, 3, 4, 5, 6, 5, 7, 8)); // vx = A41/det(q_delta)
p_result.y = 1 / det * (q.det(0, 2, 3, 1, 5, 6, 2, 7, 8)); // vy = A42/det(q_delta)
p_result.z = -1 / det * (q.det(0, 1, 3, 1, 4, 6, 2, 5, 8)); // vz = A43/det(q_delta)
error = vertex_error(q, p_result.x, p_result.y, p_result.z);
} else {
// det = 0 -> try to find best result
vec3f p1 = vertices[id_v1].p;
vec3f p2 = vertices[id_v2].p;
vec3f p3 = (p1 + p2) / 2;
double error1 = vertex_error(q, p1.x, p1.y, p1.z);
double error2 = vertex_error(q, p2.x, p2.y, p2.z);
double error3 = vertex_error(q, p3.x, p3.y, p3.z);
error = min(error1, min(error2, error3));
if (error1 == error)
p_result = p1;
if (error2 == error)
p_result = p2;
if (error3 == error)
p_result = p3;
}
return error;
}
void initialize(const Array &arrays) {
ERR_FAIL_COND(arrays.size() != ArrayMesh::ARRAY_MAX);
PoolVector<Vector3> pvertices = arrays.get(ArrayMesh::ARRAY_VERTEX);
PoolVector<Vector3> pnormals = arrays.get(ArrayMesh::ARRAY_NORMAL);
PoolVector<Color> pcolors = arrays.get(ArrayMesh::ARRAY_COLOR);
PoolVector<Vector2> puvs = arrays.get(ArrayMesh::ARRAY_TEX_UV);
PoolVector<Vector2> puv2s = arrays.get(ArrayMesh::ARRAY_TEX_UV2);
_format = 0;
if (pnormals.size() > 0)
_format |= RenderingServer::ARRAY_FORMAT_NORMAL;
if (pcolors.size() > 0)
_format |= RenderingServer::ARRAY_FORMAT_COLOR;
if (puvs.size() > 0)
_format |= RenderingServer::ARRAY_FORMAT_TEX_UV;
if (puv2s.size() > 0)
_format |= RenderingServer::ARRAY_FORMAT_TEX_UV2;
//_vertices.resize(vertices.size());
for (int i = 0; i < pvertices.size(); ++i) {
Vector3 v3 = pvertices[i];
Vertex vert;
vert.p.x = v3.x;
vert.p.y = v3.y;
vert.p.z = v3.z;
vertices.push_back(vert);
}
std::vector<vec3f> uvs;
for (int i = 0; i < puvs.size(); ++i) {
Vector2 v2 = puvs[i];
vec3f uv;
uv.x = v2.x;
uv.y = v2.y;
uv.z = 0;
uvs.push_back(uv);
}
PoolVector<int> pindices = arrays.get(ArrayMesh::ARRAY_INDEX);
if ((pindices.size() % 3) != 0) {
ERR_FAIL_MSG("The index array length must be a multiple of 3 in order to represent triangles.");
}
//std::vector<std::vector<int> > uvMap;
for (int i = 0; i < pindices.size(); i += 3) {
Triangle t;
int i0 = pindices[i];
int i1 = pindices[i + 1];
int i2 = pindices[i + 2];
t.v[0] = i0;
t.v[1] = i1;
t.v[2] = i2;
if ((_format & RenderingServer::ARRAY_FORMAT_COLOR) != 0) {
t.color[0] = pcolors[i0];
t.color[1] = pcolors[i1];
t.color[2] = pcolors[i2];
}
if ((_format & RenderingServer::ARRAY_FORMAT_NORMAL) != 0) {
Vector3 v = pnormals[i0];
vec3f vn(v.x, v.y, v.z);
t.n = vn;
}
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV) != 0) {
Vector2 tv0 = puvs[i0];
Vector2 tv1 = puvs[i1];
Vector2 tv2 = puvs[i2];
t.uvs[0] = vec3f(tv0.x, tv0.y, 0);
t.uvs[1] = vec3f(tv1.x, tv1.y, 0);
t.uvs[2] = vec3f(tv2.x, tv2.y, 0);
}
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV2) != 0) {
Vector2 tv0 = puvs[i0];
Vector2 tv1 = puvs[i1];
Vector2 tv2 = puvs[i2];
t.uv2s[0] = vec3f(tv0.x, tv0.y, 0);
t.uv2s[1] = vec3f(tv1.x, tv1.y, 0);
t.uv2s[2] = vec3f(tv2.x, tv2.y, 0);
}
//std::vector<int> indices;
//indices.push_back(pindices[i]);
//indices.push_back(pindices[i + 1]);
//indices.push_back(pindices[i + 2]);
//uvMap.push_back(indices);
t.material = 0;
triangles.push_back(t);
}
//if (uvs.size()) {
// for (int i = 0; i < triangles.size(); ++i) {
// for (int j = 0; j < 3; ++j)
// triangles[i].uvs[j] = uvs[uvMap[i][j]];
// }
//}
}
Array get_arrays() {
Array arr;
arr.resize(ArrayMesh::ARRAY_MAX);
PoolVector<Vector3> pvertices;
PoolVector<Vector3> pnormals;
PoolVector<Color> pcolors;
PoolVector<Vector2> puvs;
PoolVector<Vector2> puv2s;
PoolVector<int> pindices;
pvertices.resize(vertices.size());
for (int i = 0; i < pvertices.size(); ++i) {
Vector3 v;
vec3f vf = vertices[i].p;
v.x = vf.x;
v.y = vf.y;
v.z = vf.z;
pvertices.set(i, v);
}
if ((_format & RenderingServer::ARRAY_FORMAT_COLOR) != 0) {
pcolors.resize(pvertices.size());
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle t = triangles[i];
if (!t.deleted) {
pcolors.set(t.v[0], t.color[0]);
pcolors.set(t.v[1], t.color[1]);
pcolors.set(t.v[2], t.color[2]);
}
}
arr.set(ArrayMesh::ARRAY_COLOR, pcolors);
}
if ((_format & RenderingServer::ARRAY_FORMAT_NORMAL) != 0) {
pnormals.resize(pvertices.size());
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle t = triangles[i];
if (!t.deleted) {
Vector3 v(t.n.x, t.n.y, t.n.z);
pnormals.set(t.v[0], v);
pnormals.set(t.v[1], v);
pnormals.set(t.v[2], v);
}
}
arr.set(ArrayMesh::ARRAY_NORMAL, pnormals);
}
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV) != 0) {
puvs.resize(pvertices.size());
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle t = triangles[i];
if (!t.deleted) {
Vector2 v1(t.uvs[0].x, t.uvs[0].y);
Vector2 v2(t.uvs[1].x, t.uvs[1].y);
Vector2 v3(t.uvs[2].x, t.uvs[2].y);
puvs.set(t.v[0], v1);
puvs.set(t.v[1], v2);
puvs.set(t.v[2], v3);
}
}
arr.set(ArrayMesh::ARRAY_TEX_UV, puvs);
}
if ((_format & RenderingServer::ARRAY_FORMAT_TEX_UV2) != 0) {
puv2s.resize(pvertices.size());
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle t = triangles[i];
if (!t.deleted) {
Vector2 v1(t.uv2s[0].x, t.uv2s[0].y);
Vector2 v2(t.uv2s[1].x, t.uv2s[1].y);
Vector2 v3(t.uv2s[2].x, t.uv2s[2].y);
puv2s.set(t.v[0], v1);
puv2s.set(t.v[1], v2);
puv2s.set(t.v[2], v3);
}
}
arr.set(ArrayMesh::ARRAY_TEX_UV2, puv2s);
}
//pindices.resize(_mu_triangles.size() * 3);
for (unsigned int i = 0; i < triangles.size(); ++i) {
Triangle t = triangles[i];
if (!t.deleted) {
pindices.push_back(t.v[0]);
pindices.push_back(t.v[1]);
pindices.push_back(t.v[2]);
//print_error(String::num(t.v[0]) + " " + String::num(t.v[1]) + " " + String::num(t.v[2]) + " ");
}
}
arr.set(ArrayMesh::ARRAY_VERTEX, pvertices);
arr.set(ArrayMesh::ARRAY_INDEX, pindices);
return arr;
}
FQMS() {
_max_iteration_count = 100;
_max_lossless_iteration_count = 9990;
_enable_smart_link = false;
_preserve_border_dges = false;
_preserve_uv_seam_edges = false;
_preserve_uv_foldover_edges = false;
_format = 0;
_vertex_link_distance = sqrt(DBL_EPSILON);
}
~FQMS() {
triangles.clear();
vertices.clear();
refs.clear();
}
}; // namespace Simplify
} // namespace Simplify
// namespace Simplify
///////////////////////////////////////////
#endif