mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-26 10:59:18 +01:00
392 lines
13 KiB
C++
392 lines
13 KiB
C++
#ifndef BT_SPATIAL_ALGEBRA_H
|
|
#define BT_SPATIAL_ALGEBRA_H
|
|
/*
|
|
Copyright (c) 2003-2015 Erwin Coumans, Jakub Stepien
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///These spatial algebra classes are used for btMultiBody,
|
|
///see BulletDynamics/Featherstone
|
|
|
|
|
|
|
|
|
|
#include "btMatrix3x3.h"
|
|
|
|
struct btSpatialForceVector
|
|
{
|
|
btVector3 m_topVec, m_bottomVec;
|
|
//
|
|
btSpatialForceVector() { setZero(); }
|
|
btSpatialForceVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(linear), m_bottomVec(angular) {}
|
|
btSpatialForceVector(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
|
{
|
|
setValue(ax, ay, az, lx, ly, lz);
|
|
}
|
|
//
|
|
void setVector(const btVector3 &angular, const btVector3 &linear)
|
|
{
|
|
m_topVec = linear;
|
|
m_bottomVec = angular;
|
|
}
|
|
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
|
{
|
|
m_bottomVec.setValue(ax, ay, az);
|
|
m_topVec.setValue(lx, ly, lz);
|
|
}
|
|
//
|
|
void addVector(const btVector3 &angular, const btVector3 &linear)
|
|
{
|
|
m_topVec += linear;
|
|
m_bottomVec += angular;
|
|
}
|
|
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
|
{
|
|
m_bottomVec[0] += ax;
|
|
m_bottomVec[1] += ay;
|
|
m_bottomVec[2] += az;
|
|
m_topVec[0] += lx;
|
|
m_topVec[1] += ly;
|
|
m_topVec[2] += lz;
|
|
}
|
|
//
|
|
const btVector3 &getLinear() const { return m_topVec; }
|
|
const btVector3 &getAngular() const { return m_bottomVec; }
|
|
//
|
|
void setLinear(const btVector3 &linear) { m_topVec = linear; }
|
|
void setAngular(const btVector3 &angular) { m_bottomVec = angular; }
|
|
//
|
|
void addAngular(const btVector3 &angular) { m_bottomVec += angular; }
|
|
void addLinear(const btVector3 &linear) { m_topVec += linear; }
|
|
//
|
|
void setZero()
|
|
{
|
|
m_topVec.setZero();
|
|
m_bottomVec.setZero();
|
|
}
|
|
//
|
|
btSpatialForceVector &operator+=(const btSpatialForceVector &vec)
|
|
{
|
|
m_topVec += vec.m_topVec;
|
|
m_bottomVec += vec.m_bottomVec;
|
|
return *this;
|
|
}
|
|
btSpatialForceVector &operator-=(const btSpatialForceVector &vec)
|
|
{
|
|
m_topVec -= vec.m_topVec;
|
|
m_bottomVec -= vec.m_bottomVec;
|
|
return *this;
|
|
}
|
|
btSpatialForceVector operator-(const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec - vec.m_bottomVec, m_topVec - vec.m_topVec); }
|
|
btSpatialForceVector operator+(const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec + vec.m_bottomVec, m_topVec + vec.m_topVec); }
|
|
btSpatialForceVector operator-() const { return btSpatialForceVector(-m_bottomVec, -m_topVec); }
|
|
btSpatialForceVector operator*(const btScalar &s) const { return btSpatialForceVector(s * m_bottomVec, s * m_topVec); }
|
|
//btSpatialForceVector & operator = (const btSpatialForceVector &vec) { m_topVec = vec.m_topVec; m_bottomVec = vec.m_bottomVec; return *this; }
|
|
};
|
|
|
|
struct btSpatialMotionVector
|
|
{
|
|
btVector3 m_topVec, m_bottomVec;
|
|
//
|
|
btSpatialMotionVector() { setZero(); }
|
|
btSpatialMotionVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(angular), m_bottomVec(linear) {}
|
|
//
|
|
void setVector(const btVector3 &angular, const btVector3 &linear)
|
|
{
|
|
m_topVec = angular;
|
|
m_bottomVec = linear;
|
|
}
|
|
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
|
{
|
|
m_topVec.setValue(ax, ay, az);
|
|
m_bottomVec.setValue(lx, ly, lz);
|
|
}
|
|
//
|
|
void addVector(const btVector3 &angular, const btVector3 &linear)
|
|
{
|
|
m_topVec += linear;
|
|
m_bottomVec += angular;
|
|
}
|
|
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
|
{
|
|
m_topVec[0] += ax;
|
|
m_topVec[1] += ay;
|
|
m_topVec[2] += az;
|
|
m_bottomVec[0] += lx;
|
|
m_bottomVec[1] += ly;
|
|
m_bottomVec[2] += lz;
|
|
}
|
|
//
|
|
const btVector3 &getAngular() const { return m_topVec; }
|
|
const btVector3 &getLinear() const { return m_bottomVec; }
|
|
//
|
|
void setAngular(const btVector3 &angular) { m_topVec = angular; }
|
|
void setLinear(const btVector3 &linear) { m_bottomVec = linear; }
|
|
//
|
|
void addAngular(const btVector3 &angular) { m_topVec += angular; }
|
|
void addLinear(const btVector3 &linear) { m_bottomVec += linear; }
|
|
//
|
|
void setZero()
|
|
{
|
|
m_topVec.setZero();
|
|
m_bottomVec.setZero();
|
|
}
|
|
//
|
|
btScalar dot(const btSpatialForceVector &b) const
|
|
{
|
|
return m_bottomVec.dot(b.m_topVec) + m_topVec.dot(b.m_bottomVec);
|
|
}
|
|
//
|
|
template <typename SpatialVectorType>
|
|
void cross(const SpatialVectorType &b, SpatialVectorType &out) const
|
|
{
|
|
out.m_topVec = m_topVec.cross(b.m_topVec);
|
|
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
|
|
}
|
|
template <typename SpatialVectorType>
|
|
SpatialVectorType cross(const SpatialVectorType &b) const
|
|
{
|
|
SpatialVectorType out;
|
|
out.m_topVec = m_topVec.cross(b.m_topVec);
|
|
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
|
|
return out;
|
|
}
|
|
//
|
|
btSpatialMotionVector &operator+=(const btSpatialMotionVector &vec)
|
|
{
|
|
m_topVec += vec.m_topVec;
|
|
m_bottomVec += vec.m_bottomVec;
|
|
return *this;
|
|
}
|
|
btSpatialMotionVector &operator-=(const btSpatialMotionVector &vec)
|
|
{
|
|
m_topVec -= vec.m_topVec;
|
|
m_bottomVec -= vec.m_bottomVec;
|
|
return *this;
|
|
}
|
|
btSpatialMotionVector &operator*=(const btScalar &s)
|
|
{
|
|
m_topVec *= s;
|
|
m_bottomVec *= s;
|
|
return *this;
|
|
}
|
|
btSpatialMotionVector operator-(const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec - vec.m_topVec, m_bottomVec - vec.m_bottomVec); }
|
|
btSpatialMotionVector operator+(const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec + vec.m_topVec, m_bottomVec + vec.m_bottomVec); }
|
|
btSpatialMotionVector operator-() const { return btSpatialMotionVector(-m_topVec, -m_bottomVec); }
|
|
btSpatialMotionVector operator*(const btScalar &s) const { return btSpatialMotionVector(s * m_topVec, s * m_bottomVec); }
|
|
};
|
|
|
|
struct btSymmetricSpatialDyad
|
|
{
|
|
btMatrix3x3 m_topLeftMat, m_topRightMat, m_bottomLeftMat;
|
|
//
|
|
btSymmetricSpatialDyad() { setIdentity(); }
|
|
btSymmetricSpatialDyad(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat) { setMatrix(topLeftMat, topRightMat, bottomLeftMat); }
|
|
//
|
|
void setMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
|
|
{
|
|
m_topLeftMat = topLeftMat;
|
|
m_topRightMat = topRightMat;
|
|
m_bottomLeftMat = bottomLeftMat;
|
|
}
|
|
//
|
|
void addMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
|
|
{
|
|
m_topLeftMat += topLeftMat;
|
|
m_topRightMat += topRightMat;
|
|
m_bottomLeftMat += bottomLeftMat;
|
|
}
|
|
//
|
|
void setIdentity()
|
|
{
|
|
m_topLeftMat.setIdentity();
|
|
m_topRightMat.setIdentity();
|
|
m_bottomLeftMat.setIdentity();
|
|
}
|
|
//
|
|
btSymmetricSpatialDyad &operator-=(const btSymmetricSpatialDyad &mat)
|
|
{
|
|
m_topLeftMat -= mat.m_topLeftMat;
|
|
m_topRightMat -= mat.m_topRightMat;
|
|
m_bottomLeftMat -= mat.m_bottomLeftMat;
|
|
return *this;
|
|
}
|
|
//
|
|
btSpatialForceVector operator*(const btSpatialMotionVector &vec)
|
|
{
|
|
return btSpatialForceVector(m_bottomLeftMat * vec.m_topVec + m_topLeftMat.transpose() * vec.m_bottomVec, m_topLeftMat * vec.m_topVec + m_topRightMat * vec.m_bottomVec);
|
|
}
|
|
};
|
|
|
|
struct btSpatialTransformationMatrix
|
|
{
|
|
btMatrix3x3 m_rotMat; //btMatrix3x3 m_trnCrossMat;
|
|
btVector3 m_trnVec;
|
|
//
|
|
enum eOutputOperation
|
|
{
|
|
None = 0,
|
|
Add = 1,
|
|
Subtract = 2
|
|
};
|
|
//
|
|
template <typename SpatialVectorType>
|
|
void transform(const SpatialVectorType &inVec,
|
|
SpatialVectorType &outVec,
|
|
eOutputOperation outOp = None)
|
|
{
|
|
if (outOp == None)
|
|
{
|
|
outVec.m_topVec = m_rotMat * inVec.m_topVec;
|
|
outVec.m_bottomVec = -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
|
|
}
|
|
else if (outOp == Add)
|
|
{
|
|
outVec.m_topVec += m_rotMat * inVec.m_topVec;
|
|
outVec.m_bottomVec += -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
|
|
}
|
|
else if (outOp == Subtract)
|
|
{
|
|
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
|
|
outVec.m_bottomVec -= -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
|
|
}
|
|
}
|
|
|
|
template <typename SpatialVectorType>
|
|
void transformRotationOnly(const SpatialVectorType &inVec,
|
|
SpatialVectorType &outVec,
|
|
eOutputOperation outOp = None)
|
|
{
|
|
if (outOp == None)
|
|
{
|
|
outVec.m_topVec = m_rotMat * inVec.m_topVec;
|
|
outVec.m_bottomVec = m_rotMat * inVec.m_bottomVec;
|
|
}
|
|
else if (outOp == Add)
|
|
{
|
|
outVec.m_topVec += m_rotMat * inVec.m_topVec;
|
|
outVec.m_bottomVec += m_rotMat * inVec.m_bottomVec;
|
|
}
|
|
else if (outOp == Subtract)
|
|
{
|
|
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
|
|
outVec.m_bottomVec -= m_rotMat * inVec.m_bottomVec;
|
|
}
|
|
}
|
|
|
|
template <typename SpatialVectorType>
|
|
void transformInverse(const SpatialVectorType &inVec,
|
|
SpatialVectorType &outVec,
|
|
eOutputOperation outOp = None)
|
|
{
|
|
if (outOp == None)
|
|
{
|
|
outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
|
|
outVec.m_bottomVec = m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
|
|
}
|
|
else if (outOp == Add)
|
|
{
|
|
outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
|
|
outVec.m_bottomVec += m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
|
|
}
|
|
else if (outOp == Subtract)
|
|
{
|
|
outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
|
|
outVec.m_bottomVec -= m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
|
|
}
|
|
}
|
|
|
|
template <typename SpatialVectorType>
|
|
void transformInverseRotationOnly(const SpatialVectorType &inVec,
|
|
SpatialVectorType &outVec,
|
|
eOutputOperation outOp = None)
|
|
{
|
|
if (outOp == None)
|
|
{
|
|
outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
|
|
outVec.m_bottomVec = m_rotMat.transpose() * inVec.m_bottomVec;
|
|
}
|
|
else if (outOp == Add)
|
|
{
|
|
outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
|
|
outVec.m_bottomVec += m_rotMat.transpose() * inVec.m_bottomVec;
|
|
}
|
|
else if (outOp == Subtract)
|
|
{
|
|
outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
|
|
outVec.m_bottomVec -= m_rotMat.transpose() * inVec.m_bottomVec;
|
|
}
|
|
}
|
|
|
|
void transformInverse(const btSymmetricSpatialDyad &inMat,
|
|
btSymmetricSpatialDyad &outMat,
|
|
eOutputOperation outOp = None)
|
|
{
|
|
const btMatrix3x3 r_cross(0, -m_trnVec[2], m_trnVec[1],
|
|
m_trnVec[2], 0, -m_trnVec[0],
|
|
-m_trnVec[1], m_trnVec[0], 0);
|
|
|
|
if (outOp == None)
|
|
{
|
|
outMat.m_topLeftMat = m_rotMat.transpose() * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) * m_rotMat;
|
|
outMat.m_topRightMat = m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
|
|
outMat.m_bottomLeftMat = m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
|
|
}
|
|
else if (outOp == Add)
|
|
{
|
|
outMat.m_topLeftMat += m_rotMat.transpose() * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) * m_rotMat;
|
|
outMat.m_topRightMat += m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
|
|
outMat.m_bottomLeftMat += m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
|
|
}
|
|
else if (outOp == Subtract)
|
|
{
|
|
outMat.m_topLeftMat -= m_rotMat.transpose() * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) * m_rotMat;
|
|
outMat.m_topRightMat -= m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
|
|
outMat.m_bottomLeftMat -= m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
|
|
}
|
|
}
|
|
|
|
template <typename SpatialVectorType>
|
|
SpatialVectorType operator*(const SpatialVectorType &vec)
|
|
{
|
|
SpatialVectorType out;
|
|
transform(vec, out);
|
|
return out;
|
|
}
|
|
};
|
|
|
|
template <typename SpatialVectorType>
|
|
void symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b, btSymmetricSpatialDyad &out)
|
|
{
|
|
//output op maybe?
|
|
|
|
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
|
|
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
|
|
out.m_topLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
|
|
//maybe simple a*spatTranspose(a) would be nicer?
|
|
}
|
|
|
|
template <typename SpatialVectorType>
|
|
btSymmetricSpatialDyad symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b)
|
|
{
|
|
btSymmetricSpatialDyad out;
|
|
|
|
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
|
|
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
|
|
out.m_bottomLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
|
|
|
|
return out;
|
|
//maybe simple a*spatTranspose(a) would be nicer?
|
|
}
|
|
|
|
#endif //BT_SPATIAL_ALGEBRA_H
|