mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-01 08:37:15 +01:00
1337 lines
60 KiB
C++
1337 lines
60 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#ifndef RECAST_H
|
|
#define RECAST_H
|
|
|
|
/// The value of PI used by Recast.
|
|
static const float RC_PI = 3.14159265f;
|
|
|
|
/// Used to ignore unused function parameters and silence any compiler warnings.
|
|
template<class T> void rcIgnoreUnused(const T&) { }
|
|
|
|
/// Recast log categories.
|
|
/// @see rcContext
|
|
enum rcLogCategory
|
|
{
|
|
RC_LOG_PROGRESS = 1, ///< A progress log entry.
|
|
RC_LOG_WARNING, ///< A warning log entry.
|
|
RC_LOG_ERROR ///< An error log entry.
|
|
};
|
|
|
|
/// Recast performance timer categories.
|
|
/// @see rcContext
|
|
enum rcTimerLabel
|
|
{
|
|
/// The user defined total time of the build.
|
|
RC_TIMER_TOTAL,
|
|
/// A user defined build time.
|
|
RC_TIMER_TEMP,
|
|
/// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
|
|
RC_TIMER_RASTERIZE_TRIANGLES,
|
|
/// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
|
|
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
|
|
/// The total time to build the contours. (See: #rcBuildContours)
|
|
RC_TIMER_BUILD_CONTOURS,
|
|
/// The time to trace the boundaries of the contours. (See: #rcBuildContours)
|
|
RC_TIMER_BUILD_CONTOURS_TRACE,
|
|
/// The time to simplify the contours. (See: #rcBuildContours)
|
|
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
|
|
/// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
|
|
RC_TIMER_FILTER_BORDER,
|
|
/// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
|
|
RC_TIMER_FILTER_WALKABLE,
|
|
/// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
|
|
RC_TIMER_MEDIAN_AREA,
|
|
/// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
|
|
RC_TIMER_FILTER_LOW_OBSTACLES,
|
|
/// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
|
|
RC_TIMER_BUILD_POLYMESH,
|
|
/// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
|
|
RC_TIMER_MERGE_POLYMESH,
|
|
/// The time to erode the walkable area. (See: #rcErodeWalkableArea)
|
|
RC_TIMER_ERODE_AREA,
|
|
/// The time to mark a box area. (See: #rcMarkBoxArea)
|
|
RC_TIMER_MARK_BOX_AREA,
|
|
/// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
|
|
RC_TIMER_MARK_CYLINDER_AREA,
|
|
/// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
|
|
RC_TIMER_MARK_CONVEXPOLY_AREA,
|
|
/// The total time to build the distance field. (See: #rcBuildDistanceField)
|
|
RC_TIMER_BUILD_DISTANCEFIELD,
|
|
/// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
|
|
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
|
|
/// The time to blur the distance field. (See: #rcBuildDistanceField)
|
|
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
|
|
/// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
|
|
RC_TIMER_BUILD_REGIONS,
|
|
/// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
|
|
RC_TIMER_BUILD_REGIONS_WATERSHED,
|
|
/// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
|
|
RC_TIMER_BUILD_REGIONS_EXPAND,
|
|
/// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
|
|
RC_TIMER_BUILD_REGIONS_FLOOD,
|
|
/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
|
|
RC_TIMER_BUILD_REGIONS_FILTER,
|
|
/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
|
|
RC_TIMER_BUILD_LAYERS,
|
|
/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
|
|
RC_TIMER_BUILD_POLYMESHDETAIL,
|
|
/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
|
|
RC_TIMER_MERGE_POLYMESHDETAIL,
|
|
/// The maximum number of timers. (Used for iterating timers.)
|
|
RC_MAX_TIMERS
|
|
};
|
|
|
|
/// Provides an interface for optional logging and performance tracking of the Recast
|
|
/// build process.
|
|
///
|
|
/// This class does not provide logging or timer functionality on its
|
|
/// own. Both must be provided by a concrete implementation
|
|
/// by overriding the protected member functions. Also, this class does not
|
|
/// provide an interface for extracting log messages. (Only adding them.)
|
|
/// So concrete implementations must provide one.
|
|
///
|
|
/// If no logging or timers are required, just pass an instance of this
|
|
/// class through the Recast build process.
|
|
///
|
|
/// @ingroup recast
|
|
class rcContext
|
|
{
|
|
public:
|
|
/// Constructor.
|
|
/// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
|
|
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
|
|
virtual ~rcContext() {}
|
|
|
|
/// Enables or disables logging.
|
|
/// @param[in] state TRUE if logging should be enabled.
|
|
inline void enableLog(bool state) { m_logEnabled = state; }
|
|
|
|
/// Clears all log entries.
|
|
inline void resetLog() { if (m_logEnabled) doResetLog(); }
|
|
|
|
/// Logs a message.
|
|
///
|
|
/// Example:
|
|
/// @code
|
|
/// // Where ctx is an instance of rcContext and filepath is a char array.
|
|
/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
|
|
/// @endcode
|
|
///
|
|
/// @param[in] category The category of the message.
|
|
/// @param[in] format The message.
|
|
void log(const rcLogCategory category, const char* format, ...);
|
|
|
|
/// Enables or disables the performance timers.
|
|
/// @param[in] state TRUE if timers should be enabled.
|
|
inline void enableTimer(bool state) { m_timerEnabled = state; }
|
|
|
|
/// Clears all performance timers. (Resets all to unused.)
|
|
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
|
|
|
|
/// Starts the specified performance timer.
|
|
/// @param label The category of the timer.
|
|
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
|
|
|
|
/// Stops the specified performance timer.
|
|
/// @param label The category of the timer.
|
|
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
|
|
|
|
/// Returns the total accumulated time of the specified performance timer.
|
|
/// @param label The category of the timer.
|
|
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
|
|
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
|
|
|
|
protected:
|
|
/// Clears all log entries.
|
|
virtual void doResetLog();
|
|
|
|
/// Logs a message.
|
|
/// @param[in] category The category of the message.
|
|
/// @param[in] msg The formatted message.
|
|
/// @param[in] len The length of the formatted message.
|
|
virtual void doLog(const rcLogCategory category, const char* msg, const int len) { rcIgnoreUnused(category); rcIgnoreUnused(msg); rcIgnoreUnused(len); }
|
|
|
|
/// Clears all timers. (Resets all to unused.)
|
|
virtual void doResetTimers() {}
|
|
|
|
/// Starts the specified performance timer.
|
|
/// @param[in] label The category of timer.
|
|
virtual void doStartTimer(const rcTimerLabel label) { rcIgnoreUnused(label); }
|
|
|
|
/// Stops the specified performance timer.
|
|
/// @param[in] label The category of the timer.
|
|
virtual void doStopTimer(const rcTimerLabel label) { rcIgnoreUnused(label); }
|
|
|
|
/// Returns the total accumulated time of the specified performance timer.
|
|
/// @param[in] label The category of the timer.
|
|
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
|
|
virtual int doGetAccumulatedTime(const rcTimerLabel label) const { rcIgnoreUnused(label); return -1; }
|
|
|
|
/// True if logging is enabled.
|
|
bool m_logEnabled;
|
|
|
|
/// True if the performance timers are enabled.
|
|
bool m_timerEnabled;
|
|
};
|
|
|
|
/// A helper to first start a timer and then stop it when this helper goes out of scope.
|
|
/// @see rcContext
|
|
class rcScopedTimer
|
|
{
|
|
public:
|
|
/// Constructs an instance and starts the timer.
|
|
/// @param[in] ctx The context to use.
|
|
/// @param[in] label The category of the timer.
|
|
inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); }
|
|
inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); }
|
|
|
|
private:
|
|
// Explicitly disabled copy constructor and copy assignment operator.
|
|
rcScopedTimer(const rcScopedTimer&);
|
|
rcScopedTimer& operator=(const rcScopedTimer&);
|
|
|
|
rcContext* const m_ctx;
|
|
const rcTimerLabel m_label;
|
|
};
|
|
|
|
/// Specifies a configuration to use when performing Recast builds.
|
|
/// @ingroup recast
|
|
struct rcConfig
|
|
{
|
|
/// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
|
|
int width;
|
|
|
|
/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
|
|
int height;
|
|
|
|
/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
|
|
int tileSize;
|
|
|
|
/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
|
|
int borderSize;
|
|
|
|
/// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
|
|
float cs;
|
|
|
|
/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
|
|
float ch;
|
|
|
|
/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
|
|
float bmin[3];
|
|
|
|
/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
|
|
float bmax[3];
|
|
|
|
/// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
|
|
float walkableSlopeAngle;
|
|
|
|
/// Minimum floor to 'ceiling' height that will still allow the floor area to
|
|
/// be considered walkable. [Limit: >= 3] [Units: vx]
|
|
int walkableHeight;
|
|
|
|
/// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
|
|
int walkableClimb;
|
|
|
|
/// The distance to erode/shrink the walkable area of the heightfield away from
|
|
/// obstructions. [Limit: >=0] [Units: vx]
|
|
int walkableRadius;
|
|
|
|
/// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
|
|
int maxEdgeLen;
|
|
|
|
/// The maximum distance a simplified contour's border edges should deviate
|
|
/// the original raw contour. [Limit: >=0] [Units: vx]
|
|
float maxSimplificationError;
|
|
|
|
/// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx]
|
|
int minRegionArea;
|
|
|
|
/// Any regions with a span count smaller than this value will, if possible,
|
|
/// be merged with larger regions. [Limit: >=0] [Units: vx]
|
|
int mergeRegionArea;
|
|
|
|
/// The maximum number of vertices allowed for polygons generated during the
|
|
/// contour to polygon conversion process. [Limit: >= 3]
|
|
int maxVertsPerPoly;
|
|
|
|
/// Sets the sampling distance to use when generating the detail mesh.
|
|
/// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
|
|
float detailSampleDist;
|
|
|
|
/// The maximum distance the detail mesh surface should deviate from heightfield
|
|
/// data. (For height detail only.) [Limit: >=0] [Units: wu]
|
|
float detailSampleMaxError;
|
|
};
|
|
|
|
/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
|
|
static const int RC_SPAN_HEIGHT_BITS = 13;
|
|
/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
|
|
static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1;
|
|
|
|
/// The number of spans allocated per span spool.
|
|
/// @see rcSpanPool
|
|
static const int RC_SPANS_PER_POOL = 2048;
|
|
|
|
/// Represents a span in a heightfield.
|
|
/// @see rcHeightfield
|
|
struct rcSpan
|
|
{
|
|
unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax]
|
|
unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
|
|
unsigned int area : 6; ///< The area id assigned to the span.
|
|
rcSpan* next; ///< The next span higher up in column.
|
|
};
|
|
|
|
/// A memory pool used for quick allocation of spans within a heightfield.
|
|
/// @see rcHeightfield
|
|
struct rcSpanPool
|
|
{
|
|
rcSpanPool* next; ///< The next span pool.
|
|
rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool.
|
|
};
|
|
|
|
/// A dynamic heightfield representing obstructed space.
|
|
/// @ingroup recast
|
|
struct rcHeightfield
|
|
{
|
|
rcHeightfield();
|
|
~rcHeightfield();
|
|
|
|
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
|
|
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
|
|
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
|
|
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
|
|
float cs; ///< The size of each cell. (On the xz-plane.)
|
|
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
|
|
rcSpan** spans; ///< Heightfield of spans (width*height).
|
|
rcSpanPool* pools; ///< Linked list of span pools.
|
|
rcSpan* freelist; ///< The next free span.
|
|
|
|
private:
|
|
// Explicitly-disabled copy constructor and copy assignment operator.
|
|
rcHeightfield(const rcHeightfield&);
|
|
rcHeightfield& operator=(const rcHeightfield&);
|
|
};
|
|
|
|
/// Provides information on the content of a cell column in a compact heightfield.
|
|
struct rcCompactCell
|
|
{
|
|
unsigned int index : 24; ///< Index to the first span in the column.
|
|
unsigned int count : 8; ///< Number of spans in the column.
|
|
};
|
|
|
|
/// Represents a span of unobstructed space within a compact heightfield.
|
|
struct rcCompactSpan
|
|
{
|
|
unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.)
|
|
unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
|
|
unsigned int con : 24; ///< Packed neighbor connection data.
|
|
unsigned int h : 8; ///< The height of the span. (Measured from #y.)
|
|
};
|
|
|
|
/// A compact, static heightfield representing unobstructed space.
|
|
/// @ingroup recast
|
|
struct rcCompactHeightfield
|
|
{
|
|
rcCompactHeightfield();
|
|
~rcCompactHeightfield();
|
|
|
|
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
|
|
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
|
|
int spanCount; ///< The number of spans in the heightfield.
|
|
int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
|
|
int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
|
|
int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
|
|
unsigned short maxDistance; ///< The maximum distance value of any span within the field.
|
|
unsigned short maxRegions; ///< The maximum region id of any span within the field.
|
|
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
|
|
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
|
|
float cs; ///< The size of each cell. (On the xz-plane.)
|
|
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
|
|
rcCompactCell* cells; ///< Array of cells. [Size: #width*#height]
|
|
rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount]
|
|
unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount]
|
|
unsigned char* areas; ///< Array containing area id data. [Size: #spanCount]
|
|
|
|
private:
|
|
// Explicitly-disabled copy constructor and copy assignment operator.
|
|
rcCompactHeightfield(const rcCompactHeightfield&);
|
|
rcCompactHeightfield& operator=(const rcCompactHeightfield&);
|
|
};
|
|
|
|
/// Represents a heightfield layer within a layer set.
|
|
/// @see rcHeightfieldLayerSet
|
|
struct rcHeightfieldLayer
|
|
{
|
|
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
|
|
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
|
|
float cs; ///< The size of each cell. (On the xz-plane.)
|
|
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
|
|
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
|
|
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
|
|
int minx; ///< The minimum x-bounds of usable data.
|
|
int maxx; ///< The maximum x-bounds of usable data.
|
|
int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
|
|
int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.)
|
|
int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
|
|
int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.)
|
|
unsigned char* heights; ///< The heightfield. [Size: width * height]
|
|
unsigned char* areas; ///< Area ids. [Size: Same as #heights]
|
|
unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights]
|
|
};
|
|
|
|
/// Represents a set of heightfield layers.
|
|
/// @ingroup recast
|
|
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
|
|
struct rcHeightfieldLayerSet
|
|
{
|
|
rcHeightfieldLayerSet();
|
|
~rcHeightfieldLayerSet();
|
|
|
|
rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
|
|
int nlayers; ///< The number of layers in the set.
|
|
|
|
private:
|
|
// Explicitly-disabled copy constructor and copy assignment operator.
|
|
rcHeightfieldLayerSet(const rcHeightfieldLayerSet&);
|
|
rcHeightfieldLayerSet& operator=(const rcHeightfieldLayerSet&);
|
|
};
|
|
|
|
/// Represents a simple, non-overlapping contour in field space.
|
|
struct rcContour
|
|
{
|
|
int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
|
|
int nverts; ///< The number of vertices in the simplified contour.
|
|
int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
|
|
int nrverts; ///< The number of vertices in the raw contour.
|
|
unsigned short reg; ///< The region id of the contour.
|
|
unsigned char area; ///< The area id of the contour.
|
|
};
|
|
|
|
/// Represents a group of related contours.
|
|
/// @ingroup recast
|
|
struct rcContourSet
|
|
{
|
|
rcContourSet();
|
|
~rcContourSet();
|
|
|
|
rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
|
|
int nconts; ///< The number of contours in the set.
|
|
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
|
|
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
|
|
float cs; ///< The size of each cell. (On the xz-plane.)
|
|
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
|
|
int width; ///< The width of the set. (Along the x-axis in cell units.)
|
|
int height; ///< The height of the set. (Along the z-axis in cell units.)
|
|
int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived.
|
|
float maxError; ///< The max edge error that this contour set was simplified with.
|
|
|
|
private:
|
|
// Explicitly-disabled copy constructor and copy assignment operator.
|
|
rcContourSet(const rcContourSet&);
|
|
rcContourSet& operator=(const rcContourSet&);
|
|
};
|
|
|
|
/// Represents a polygon mesh suitable for use in building a navigation mesh.
|
|
/// @ingroup recast
|
|
struct rcPolyMesh
|
|
{
|
|
rcPolyMesh();
|
|
~rcPolyMesh();
|
|
|
|
unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
|
|
unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
|
|
unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
|
|
unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys]
|
|
unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys]
|
|
int nverts; ///< The number of vertices.
|
|
int npolys; ///< The number of polygons.
|
|
int maxpolys; ///< The number of allocated polygons.
|
|
int nvp; ///< The maximum number of vertices per polygon.
|
|
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
|
|
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
|
|
float cs; ///< The size of each cell. (On the xz-plane.)
|
|
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
|
|
int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived.
|
|
float maxEdgeError; ///< The max error of the polygon edges in the mesh.
|
|
|
|
private:
|
|
// Explicitly-disabled copy constructor and copy assignment operator.
|
|
rcPolyMesh(const rcPolyMesh&);
|
|
rcPolyMesh& operator=(const rcPolyMesh&);
|
|
};
|
|
|
|
/// Contains triangle meshes that represent detailed height data associated
|
|
/// with the polygons in its associated polygon mesh object.
|
|
/// @ingroup recast
|
|
struct rcPolyMeshDetail
|
|
{
|
|
rcPolyMeshDetail();
|
|
|
|
unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes]
|
|
float* verts; ///< The mesh vertices. [Size: 3*#nverts]
|
|
unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris]
|
|
int nmeshes; ///< The number of sub-meshes defined by #meshes.
|
|
int nverts; ///< The number of vertices in #verts.
|
|
int ntris; ///< The number of triangles in #tris.
|
|
|
|
private:
|
|
// Explicitly-disabled copy constructor and copy assignment operator.
|
|
rcPolyMeshDetail(const rcPolyMeshDetail&);
|
|
rcPolyMeshDetail& operator=(const rcPolyMeshDetail&);
|
|
};
|
|
|
|
/// @name Allocation Functions
|
|
/// Functions used to allocate and de-allocate Recast objects.
|
|
/// @see rcAllocSetCustom
|
|
/// @{
|
|
|
|
/// Allocates a heightfield object using the Recast allocator.
|
|
/// @return A heightfield that is ready for initialization, or null on failure.
|
|
/// @ingroup recast
|
|
/// @see rcCreateHeightfield, rcFreeHeightField
|
|
rcHeightfield* rcAllocHeightfield();
|
|
|
|
/// Frees the specified heightfield object using the Recast allocator.
|
|
/// @param[in] heightfield A heightfield allocated using #rcAllocHeightfield
|
|
/// @ingroup recast
|
|
/// @see rcAllocHeightfield
|
|
void rcFreeHeightField(rcHeightfield* heightfield);
|
|
|
|
/// Allocates a compact heightfield object using the Recast allocator.
|
|
/// @return A compact heightfield that is ready for initialization, or null on failure.
|
|
/// @ingroup recast
|
|
/// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
|
|
rcCompactHeightfield* rcAllocCompactHeightfield();
|
|
|
|
/// Frees the specified compact heightfield object using the Recast allocator.
|
|
/// @param[in] compactHeightfield A compact heightfield allocated using #rcAllocCompactHeightfield
|
|
/// @ingroup recast
|
|
/// @see rcAllocCompactHeightfield
|
|
void rcFreeCompactHeightfield(rcCompactHeightfield* compactHeightfield);
|
|
|
|
/// Allocates a heightfield layer set using the Recast allocator.
|
|
/// @return A heightfield layer set that is ready for initialization, or null on failure.
|
|
/// @ingroup recast
|
|
/// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
|
|
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
|
|
|
|
/// Frees the specified heightfield layer set using the Recast allocator.
|
|
/// @param[in] layerSet A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
|
|
/// @ingroup recast
|
|
/// @see rcAllocHeightfieldLayerSet
|
|
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* layerSet);
|
|
|
|
/// Allocates a contour set object using the Recast allocator.
|
|
/// @return A contour set that is ready for initialization, or null on failure.
|
|
/// @ingroup recast
|
|
/// @see rcBuildContours, rcFreeContourSet
|
|
rcContourSet* rcAllocContourSet();
|
|
|
|
/// Frees the specified contour set using the Recast allocator.
|
|
/// @param[in] contourSet A contour set allocated using #rcAllocContourSet
|
|
/// @ingroup recast
|
|
/// @see rcAllocContourSet
|
|
void rcFreeContourSet(rcContourSet* contourSet);
|
|
|
|
/// Allocates a polygon mesh object using the Recast allocator.
|
|
/// @return A polygon mesh that is ready for initialization, or null on failure.
|
|
/// @ingroup recast
|
|
/// @see rcBuildPolyMesh, rcFreePolyMesh
|
|
rcPolyMesh* rcAllocPolyMesh();
|
|
|
|
/// Frees the specified polygon mesh using the Recast allocator.
|
|
/// @param[in] polyMesh A polygon mesh allocated using #rcAllocPolyMesh
|
|
/// @ingroup recast
|
|
/// @see rcAllocPolyMesh
|
|
void rcFreePolyMesh(rcPolyMesh* polyMesh);
|
|
|
|
/// Allocates a detail mesh object using the Recast allocator.
|
|
/// @return A detail mesh that is ready for initialization, or null on failure.
|
|
/// @ingroup recast
|
|
/// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
|
|
rcPolyMeshDetail* rcAllocPolyMeshDetail();
|
|
|
|
/// Frees the specified detail mesh using the Recast allocator.
|
|
/// @param[in] detailMesh A detail mesh allocated using #rcAllocPolyMeshDetail
|
|
/// @ingroup recast
|
|
/// @see rcAllocPolyMeshDetail
|
|
void rcFreePolyMeshDetail(rcPolyMeshDetail* detailMesh);
|
|
|
|
/// @}
|
|
|
|
/// Heightfield border flag.
|
|
/// If a heightfield region ID has this bit set, then the region is a border
|
|
/// region and its spans are considered un-walkable.
|
|
/// (Used during the region and contour build process.)
|
|
/// @see rcCompactSpan::reg
|
|
static const unsigned short RC_BORDER_REG = 0x8000;
|
|
|
|
/// Polygon touches multiple regions.
|
|
/// If a polygon has this region ID it was merged with or created
|
|
/// from polygons of different regions during the polymesh
|
|
/// build step that removes redundant border vertices.
|
|
/// (Used during the polymesh and detail polymesh build processes)
|
|
/// @see rcPolyMesh::regs
|
|
static const unsigned short RC_MULTIPLE_REGS = 0;
|
|
|
|
/// Border vertex flag.
|
|
/// If a region ID has this bit set, then the associated element lies on
|
|
/// a tile border. If a contour vertex's region ID has this bit set, the
|
|
/// vertex will later be removed in order to match the segments and vertices
|
|
/// at tile boundaries.
|
|
/// (Used during the build process.)
|
|
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
|
|
static const int RC_BORDER_VERTEX = 0x10000;
|
|
|
|
/// Area border flag.
|
|
/// If a region ID has this bit set, then the associated element lies on
|
|
/// the border of an area.
|
|
/// (Used during the region and contour build process.)
|
|
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
|
|
static const int RC_AREA_BORDER = 0x20000;
|
|
|
|
/// Contour build flags.
|
|
/// @see rcBuildContours
|
|
enum rcBuildContoursFlags
|
|
{
|
|
RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification.
|
|
RC_CONTOUR_TESS_AREA_EDGES = 0x02 ///< Tessellate edges between areas during contour simplification.
|
|
};
|
|
|
|
/// Applied to the region id field of contour vertices in order to extract the region id.
|
|
/// The region id field of a vertex may have several flags applied to it. So the
|
|
/// fields value can't be used directly.
|
|
/// @see rcContour::verts, rcContour::rverts
|
|
static const int RC_CONTOUR_REG_MASK = 0xffff;
|
|
|
|
/// An value which indicates an invalid index within a mesh.
|
|
/// @note This does not necessarily indicate an error.
|
|
/// @see rcPolyMesh::polys
|
|
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
|
|
|
|
/// Represents the null area.
|
|
/// When a data element is given this value it is considered to no longer be
|
|
/// assigned to a usable area. (E.g. It is un-walkable.)
|
|
static const unsigned char RC_NULL_AREA = 0;
|
|
|
|
/// The default area id used to indicate a walkable polygon.
|
|
/// This is also the maximum allowed area id, and the only non-null area id
|
|
/// recognized by some steps in the build process.
|
|
static const unsigned char RC_WALKABLE_AREA = 63;
|
|
|
|
/// The value returned by #rcGetCon if the specified direction is not connected
|
|
/// to another span. (Has no neighbor.)
|
|
static const int RC_NOT_CONNECTED = 0x3f;
|
|
|
|
/// @name General helper functions
|
|
/// @{
|
|
|
|
/// Swaps the values of the two parameters.
|
|
/// @param[in,out] a Value A
|
|
/// @param[in,out] b Value B
|
|
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
|
|
|
|
/// Returns the minimum of two values.
|
|
/// @param[in] a Value A
|
|
/// @param[in] b Value B
|
|
/// @return The minimum of the two values.
|
|
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
|
|
|
|
/// Returns the maximum of two values.
|
|
/// @param[in] a Value A
|
|
/// @param[in] b Value B
|
|
/// @return The maximum of the two values.
|
|
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
|
|
|
|
/// Returns the absolute value.
|
|
/// @param[in] a The value.
|
|
/// @return The absolute value of the specified value.
|
|
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
|
|
|
|
/// Returns the square of the value.
|
|
/// @param[in] a The value.
|
|
/// @return The square of the value.
|
|
template<class T> inline T rcSqr(T a) { return a*a; }
|
|
|
|
/// Clamps the value to the specified range.
|
|
/// @param[in] value The value to clamp.
|
|
/// @param[in] minInclusive The minimum permitted return value.
|
|
/// @param[in] maxInclusive The maximum permitted return value.
|
|
/// @return The value, clamped to the specified range.
|
|
template<class T> inline T rcClamp(T value, T minInclusive, T maxInclusive)
|
|
{
|
|
return value < minInclusive ? minInclusive: (value > maxInclusive ? maxInclusive : value);
|
|
}
|
|
|
|
/// Returns the square root of the value.
|
|
/// @param[in] x The value.
|
|
/// @return The square root of the vlaue.
|
|
float rcSqrt(float x);
|
|
|
|
/// @}
|
|
/// @name Vector helper functions.
|
|
/// @{
|
|
|
|
/// Derives the cross product of two vectors. (@p v1 x @p v2)
|
|
/// @param[out] dest The cross product. [(x, y, z)]
|
|
/// @param[in] v1 A Vector [(x, y, z)]
|
|
/// @param[in] v2 A vector [(x, y, z)]
|
|
inline void rcVcross(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
/// Derives the dot product of two vectors. (@p v1 . @p v2)
|
|
/// @param[in] v1 A Vector [(x, y, z)]
|
|
/// @param[in] v2 A vector [(x, y, z)]
|
|
/// @return The dot product.
|
|
inline float rcVdot(const float* v1, const float* v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
|
|
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
|
|
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
|
|
{
|
|
dest[0] = v1[0]+v2[0]*s;
|
|
dest[1] = v1[1]+v2[1]*s;
|
|
dest[2] = v1[2]+v2[2]*s;
|
|
}
|
|
|
|
/// Performs a vector addition. (@p v1 + @p v2)
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
|
|
inline void rcVadd(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[0]+v2[0];
|
|
dest[1] = v1[1]+v2[1];
|
|
dest[2] = v1[2]+v2[2];
|
|
}
|
|
|
|
/// Performs a vector subtraction. (@p v1 - @p v2)
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
|
|
inline void rcVsub(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[0]-v2[0];
|
|
dest[1] = v1[1]-v2[1];
|
|
dest[2] = v1[2]-v2[2];
|
|
}
|
|
|
|
/// Selects the minimum value of each element from the specified vectors.
|
|
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
|
|
/// @param[in] v A vector. [(x, y, z)]
|
|
inline void rcVmin(float* mn, const float* v)
|
|
{
|
|
mn[0] = rcMin(mn[0], v[0]);
|
|
mn[1] = rcMin(mn[1], v[1]);
|
|
mn[2] = rcMin(mn[2], v[2]);
|
|
}
|
|
|
|
/// Selects the maximum value of each element from the specified vectors.
|
|
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
|
|
/// @param[in] v A vector. [(x, y, z)]
|
|
inline void rcVmax(float* mx, const float* v)
|
|
{
|
|
mx[0] = rcMax(mx[0], v[0]);
|
|
mx[1] = rcMax(mx[1], v[1]);
|
|
mx[2] = rcMax(mx[2], v[2]);
|
|
}
|
|
|
|
/// Performs a vector copy.
|
|
/// @param[out] dest The result. [(x, y, z)]
|
|
/// @param[in] v The vector to copy. [(x, y, z)]
|
|
inline void rcVcopy(float* dest, const float* v)
|
|
{
|
|
dest[0] = v[0];
|
|
dest[1] = v[1];
|
|
dest[2] = v[2];
|
|
}
|
|
|
|
/// Returns the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the two points.
|
|
inline float rcVdist(const float* v1, const float* v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return rcSqrt(dx*dx + dy*dy + dz*dz);
|
|
}
|
|
|
|
/// Returns the square of the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The square of the distance between the two points.
|
|
inline float rcVdistSqr(const float* v1, const float* v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return dx*dx + dy*dy + dz*dz;
|
|
}
|
|
|
|
/// Normalizes the vector.
|
|
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
|
inline void rcVnormalize(float* v)
|
|
{
|
|
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
|
|
v[0] *= d;
|
|
v[1] *= d;
|
|
v[2] *= d;
|
|
}
|
|
|
|
/// @}
|
|
/// @name Heightfield Functions
|
|
/// @see rcHeightfield
|
|
/// @{
|
|
|
|
/// Calculates the bounding box of an array of vertices.
|
|
/// @ingroup recast
|
|
/// @param[in] verts An array of vertices. [(x, y, z) * @p nv]
|
|
/// @param[in] numVerts The number of vertices in the @p verts array.
|
|
/// @param[out] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
|
|
/// @param[out] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
|
|
void rcCalcBounds(const float* verts, int numVerts, float* minBounds, float* maxBounds);
|
|
|
|
/// Calculates the grid size based on the bounding box and grid cell size.
|
|
/// @ingroup recast
|
|
/// @param[in] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
|
|
/// @param[in] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
|
|
/// @param[in] cellSize The xz-plane cell size. [Limit: > 0] [Units: wu]
|
|
/// @param[out] sizeX The width along the x-axis. [Limit: >= 0] [Units: vx]
|
|
/// @param[out] sizeZ The height along the z-axis. [Limit: >= 0] [Units: vx]
|
|
void rcCalcGridSize(const float* minBounds, const float* maxBounds, float cellSize, int* sizeX, int* sizeZ);
|
|
|
|
/// Initializes a new heightfield.
|
|
/// See the #rcConfig documentation for more information on the configuration parameters.
|
|
///
|
|
/// @see rcAllocHeightfield, rcHeightfield
|
|
/// @ingroup recast
|
|
///
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in,out] heightfield The allocated heightfield to initialize.
|
|
/// @param[in] sizeX The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
|
|
/// @param[in] sizeZ The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
|
|
/// @param[in] minBounds The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
|
|
/// @param[in] maxBounds The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
|
|
/// @param[in] cellSize The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
|
|
/// @param[in] cellHeight The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcCreateHeightfield(rcContext* context, rcHeightfield& heightfield, int sizeX, int sizeZ,
|
|
const float* minBounds, const float* maxBounds,
|
|
float cellSize, float cellHeight);
|
|
|
|
/// Sets the area id of all triangles with a slope below the specified value
|
|
/// to #RC_WALKABLE_AREA.
|
|
///
|
|
/// Only sets the area id's for the walkable triangles. Does not alter the
|
|
/// area id's for un-walkable triangles.
|
|
///
|
|
/// See the #rcConfig documentation for more information on the configuration parameters.
|
|
///
|
|
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
|
///
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
|
|
/// [Limits: 0 <= value < 90] [Units: Degrees]
|
|
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
|
|
/// @param[in] numVerts The number of vertices.
|
|
/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
|
|
/// @param[in] numTris The number of triangles.
|
|
/// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt]
|
|
void rcMarkWalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts,
|
|
const int* tris, int numTris, unsigned char* triAreaIDs);
|
|
|
|
/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
|
|
///
|
|
/// Only sets the area id's for the un-walkable triangles. Does not alter the
|
|
/// area id's for walkable triangles.
|
|
///
|
|
/// See the #rcConfig documentation for more information on the configuration parameters.
|
|
///
|
|
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
|
///
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
|
|
/// [Limits: 0 <= value < 90] [Units: Degrees]
|
|
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
|
|
/// @param[in] numVerts The number of vertices.
|
|
/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
|
|
/// @param[in] numTris The number of triangles.
|
|
/// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt]
|
|
void rcClearUnwalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts,
|
|
const int* tris, int numTris, unsigned char* triAreaIDs);
|
|
|
|
/// Adds a span to the specified heightfield.
|
|
///
|
|
/// The span addition can be set to favor flags. If the span is merged to
|
|
/// another span and the new @p spanMax is within @p flagMergeThreshold units
|
|
/// from the existing span, the span flags are merged.
|
|
///
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in,out] heightfield An initialized heightfield.
|
|
/// @param[in] x The column x index where the span is to be added.
|
|
/// [Limits: 0 <= value < rcHeightfield::width]
|
|
/// @param[in] z The column z index where the span is to be added.
|
|
/// [Limits: 0 <= value < rcHeightfield::height]
|
|
/// @param[in] spanMin The minimum height of the span. [Limit: < @p spanMax] [Units: vx]
|
|
/// @param[in] spanMax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
|
|
/// @param[in] areaID The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
|
|
/// @param[in] flagMergeThreshold The merge threshold. [Limit: >= 0] [Units: vx]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcAddSpan(rcContext* context, rcHeightfield& heightfield,
|
|
int x, int z,
|
|
unsigned short spanMin, unsigned short spanMax,
|
|
unsigned char areaID, int flagMergeThreshold);
|
|
|
|
/// Rasterizes a single triangle into the specified heightfield.
|
|
///
|
|
/// Calling this for each triangle in a mesh is less efficient than calling rcRasterizeTriangles
|
|
///
|
|
/// No spans will be added if the triangle does not overlap the heightfield grid.
|
|
///
|
|
/// @see rcHeightfield
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] v0 Triangle vertex 0 [(x, y, z)]
|
|
/// @param[in] v1 Triangle vertex 1 [(x, y, z)]
|
|
/// @param[in] v2 Triangle vertex 2 [(x, y, z)]
|
|
/// @param[in] areaID The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
|
|
/// @param[in,out] heightfield An initialized heightfield.
|
|
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
|
|
/// [Limit: >= 0] [Units: vx]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcRasterizeTriangle(rcContext* context,
|
|
const float* v0, const float* v1, const float* v2,
|
|
unsigned char areaID, rcHeightfield& heightfield, int flagMergeThreshold = 1);
|
|
|
|
/// Rasterizes an indexed triangle mesh into the specified heightfield.
|
|
///
|
|
/// Spans will only be added for triangles that overlap the heightfield grid.
|
|
///
|
|
/// @see rcHeightfield
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
|
|
/// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release
|
|
/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
|
|
/// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
|
|
/// @param[in] numTris The number of triangles.
|
|
/// @param[in,out] heightfield An initialized heightfield.
|
|
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
|
|
/// [Limit: >= 0] [Units: vx]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcRasterizeTriangles(rcContext* context,
|
|
const float* verts, int numVerts,
|
|
const int* tris, const unsigned char* triAreaIDs, int numTris,
|
|
rcHeightfield& heightfield, int flagMergeThreshold = 1);
|
|
|
|
/// Rasterizes an indexed triangle mesh into the specified heightfield.
|
|
///
|
|
/// Spans will only be added for triangles that overlap the heightfield grid.
|
|
///
|
|
/// @see rcHeightfield
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
|
|
/// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release
|
|
/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
|
|
/// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
|
|
/// @param[in] numTris The number of triangles.
|
|
/// @param[in,out] heightfield An initialized heightfield.
|
|
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
|
|
/// [Limit: >= 0] [Units: vx]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcRasterizeTriangles(rcContext* context,
|
|
const float* verts, int numVerts,
|
|
const unsigned short* tris, const unsigned char* triAreaIDs, int numTris,
|
|
rcHeightfield& heightfield, int flagMergeThreshold = 1);
|
|
|
|
/// Rasterizes a triangle list into the specified heightfield.
|
|
///
|
|
/// Expects each triangle to be specified as three sequential vertices of 3 floats.
|
|
///
|
|
/// Spans will only be added for triangles that overlap the heightfield grid.
|
|
///
|
|
/// @see rcHeightfield
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
|
|
/// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
|
|
/// @param[in] numTris The number of triangles.
|
|
/// @param[in,out] heightfield An initialized heightfield.
|
|
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
|
|
/// [Limit: >= 0] [Units: vx]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcRasterizeTriangles(rcContext* context,
|
|
const float* verts, const unsigned char* triAreaIDs, int numTris,
|
|
rcHeightfield& heightfield, int flagMergeThreshold = 1);
|
|
|
|
/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimb of a walkable neighbor.
|
|
///
|
|
/// Allows the formation of walkable regions that will flow over low lying
|
|
/// objects such as curbs, and up structures such as stairways.
|
|
///
|
|
/// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt>
|
|
///
|
|
/// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call
|
|
/// #rcFilterLedgeSpans after calling this filter.
|
|
///
|
|
/// @see rcHeightfield, rcConfig
|
|
///
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
|
|
/// [Limit: >=0] [Units: vx]
|
|
/// @param[in,out] heightfield A fully built heightfield. (All spans have been added.)
|
|
void rcFilterLowHangingWalkableObstacles(rcContext* context, int walkableClimb, rcHeightfield& heightfield);
|
|
|
|
/// Marks spans that are ledges as not-walkable.
|
|
///
|
|
/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb
|
|
/// from the current span's maximum.
|
|
/// This method removes the impact of the overestimation of conservative voxelization
|
|
/// so the resulting mesh will not have regions hanging in the air over ledges.
|
|
///
|
|
/// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt>
|
|
///
|
|
/// @see rcHeightfield, rcConfig
|
|
///
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
|
|
/// be considered walkable. [Limit: >= 3] [Units: vx]
|
|
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
|
|
/// [Limit: >=0] [Units: vx]
|
|
/// @param[in,out] heightfield A fully built heightfield. (All spans have been added.)
|
|
void rcFilterLedgeSpans(rcContext* context, int walkableHeight, int walkableClimb, rcHeightfield& heightfield);
|
|
|
|
/// Marks walkable spans as not walkable if the clearance above the span is less than the specified height.
|
|
///
|
|
/// For this filter, the clearance above the span is the distance from the span's
|
|
/// maximum to the next higher span's minimum. (Same grid column.)
|
|
///
|
|
/// @see rcHeightfield, rcConfig
|
|
/// @ingroup recast
|
|
///
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
|
|
/// be considered walkable. [Limit: >= 3] [Units: vx]
|
|
/// @param[in,out] heightfield A fully built heightfield. (All spans have been added.)
|
|
void rcFilterWalkableLowHeightSpans(rcContext* context, int walkableHeight, rcHeightfield& heightfield);
|
|
|
|
/// Returns the number of spans contained in the specified heightfield.
|
|
/// @ingroup recast
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] heightfield An initialized heightfield.
|
|
/// @returns The number of spans in the heightfield.
|
|
int rcGetHeightFieldSpanCount(rcContext* context, const rcHeightfield& heightfield);
|
|
|
|
/// @}
|
|
/// @name Compact Heightfield Functions
|
|
/// @see rcCompactHeightfield
|
|
/// @{
|
|
|
|
/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
|
|
///
|
|
/// This is just the beginning of the process of fully building a compact heightfield.
|
|
/// Various filters may be applied, then the distance field and regions built.
|
|
/// E.g: #rcBuildDistanceField and #rcBuildRegions
|
|
///
|
|
/// See the #rcConfig documentation for more information on the configuration parameters.
|
|
///
|
|
/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
|
|
/// @ingroup recast
|
|
///
|
|
/// @param[in,out] context The build context to use during the operation.
|
|
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
|
|
/// to be considered walkable. [Limit: >= 3] [Units: vx]
|
|
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
|
|
/// [Limit: >=0] [Units: vx]
|
|
/// @param[in] heightfield The heightfield to be compacted.
|
|
/// @param[out] compactHeightfield The resulting compact heightfield. (Must be pre-allocated.)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildCompactHeightfield(rcContext* context, int walkableHeight, int walkableClimb,
|
|
const rcHeightfield& heightfield, rcCompactHeightfield& compactHeightfield);
|
|
|
|
/// Erodes the walkable area within the heightfield by the specified radius.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
|
|
/// @param[in,out] chf The populated compact heightfield to erode.
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
|
|
|
|
/// Applies a median filter to walkable area types (based on area id), removing noise.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
|
|
|
|
/// Applies an area id to all spans within the specified bounding box. (AABB)
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] bmin The minimum of the bounding box. [(x, y, z)]
|
|
/// @param[in] bmax The maximum of the bounding box. [(x, y, z)]
|
|
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
|
|
rcCompactHeightfield& chf);
|
|
|
|
/// Applies the area id to the all spans within the specified convex polygon.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
|
|
/// @param[in] nverts The number of vertices in the polygon.
|
|
/// @param[in] hmin The height of the base of the polygon.
|
|
/// @param[in] hmax The height of the top of the polygon.
|
|
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
|
|
const float hmin, const float hmax, unsigned char areaId,
|
|
rcCompactHeightfield& chf);
|
|
|
|
/// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
|
|
/// @ingroup recast
|
|
/// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p nverts]
|
|
/// @param[in] nverts The number of vertices in the polygon.
|
|
/// @param[in] offset How much to offset the polygon by. [Units: wu]
|
|
/// @param[out] outVerts The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
|
|
/// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts.
|
|
/// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
|
|
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
|
|
float* outVerts, const int maxOutVerts);
|
|
|
|
/// Applies the area id to all spans within the specified cylinder.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)]
|
|
/// @param[in] r The radius of the cylinder.
|
|
/// @param[in] h The height of the cylinder.
|
|
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
|
|
const float r, const float h, unsigned char areaId,
|
|
rcCompactHeightfield& chf);
|
|
|
|
/// Builds the distance field for the specified compact heightfield.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
|
|
|
|
/// Builds region data for the heightfield using watershed partitioning.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
|
|
/// [Limit: >=0] [Units: vx]
|
|
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
|
|
/// [Limit: >=0] [Units: vx].
|
|
/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
|
|
/// be merged with larger regions. [Limit: >=0] [Units: vx]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea, int mergeRegionArea);
|
|
|
|
/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
|
|
/// [Limit: >=0] [Units: vx]
|
|
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
|
|
/// [Limit: >=0] [Units: vx].
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea);
|
|
|
|
/// Builds region data for the heightfield using simple monotone partitioning.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in,out] chf A populated compact heightfield.
|
|
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
|
|
/// [Limit: >=0] [Units: vx]
|
|
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
|
|
/// [Limit: >=0] [Units: vx].
|
|
/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
|
|
/// be merged with larger regions. [Limit: >=0] [Units: vx]
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
|
|
int borderSize, int minRegionArea, int mergeRegionArea);
|
|
|
|
/// Sets the neighbor connection data for the specified direction.
|
|
/// @param[in] span The span to update.
|
|
/// @param[in] direction The direction to set. [Limits: 0 <= value < 4]
|
|
/// @param[in] neighborIndex The index of the neighbor span.
|
|
inline void rcSetCon(rcCompactSpan& span, int direction, int neighborIndex)
|
|
{
|
|
const unsigned int shift = (unsigned int)direction * 6;
|
|
const unsigned int con = span.con;
|
|
span.con = (con & ~(0x3f << shift)) | (((unsigned int)neighborIndex & 0x3f) << shift);
|
|
}
|
|
|
|
/// Gets neighbor connection data for the specified direction.
|
|
/// @param[in] span The span to check.
|
|
/// @param[in] direction The direction to check. [Limits: 0 <= value < 4]
|
|
/// @return The neighbor connection data for the specified direction, or #RC_NOT_CONNECTED if there is no connection.
|
|
inline int rcGetCon(const rcCompactSpan& span, int direction)
|
|
{
|
|
const unsigned int shift = (unsigned int)direction * 6;
|
|
return (span.con >> shift) & 0x3f;
|
|
}
|
|
|
|
/// Gets the standard width (x-axis) offset for the specified direction.
|
|
/// @param[in] direction The direction. [Limits: 0 <= value < 4]
|
|
/// @return The width offset to apply to the current cell position to move in the direction.
|
|
inline int rcGetDirOffsetX(int direction)
|
|
{
|
|
static const int offset[4] = { -1, 0, 1, 0, };
|
|
return offset[direction & 0x03];
|
|
}
|
|
|
|
// TODO (graham): Rename this to rcGetDirOffsetZ
|
|
/// Gets the standard height (z-axis) offset for the specified direction.
|
|
/// @param[in] direction The direction. [Limits: 0 <= value < 4]
|
|
/// @return The height offset to apply to the current cell position to move in the direction.
|
|
inline int rcGetDirOffsetY(int direction)
|
|
{
|
|
static const int offset[4] = { 0, 1, 0, -1 };
|
|
return offset[direction & 0x03];
|
|
}
|
|
|
|
/// Gets the direction for the specified offset. One of x and y should be 0.
|
|
/// @param[in] offsetX The x offset. [Limits: -1 <= value <= 1]
|
|
/// @param[in] offsetZ The z offset. [Limits: -1 <= value <= 1]
|
|
/// @return The direction that represents the offset.
|
|
inline int rcGetDirForOffset(int offsetX, int offsetZ)
|
|
{
|
|
static const int dirs[5] = { 3, 0, -1, 2, 1 };
|
|
return dirs[((offsetZ + 1) << 1) + offsetX];
|
|
}
|
|
|
|
/// @}
|
|
/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
|
|
/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
|
|
/// @{
|
|
|
|
/// Builds a layer set from the specified compact heightfield.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] chf A fully built compact heightfield.
|
|
/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0]
|
|
/// [Units: vx]
|
|
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
|
|
/// to be considered walkable. [Limit: >= 3] [Units: vx]
|
|
/// @param[out] lset The resulting layer set. (Must be pre-allocated.)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildHeightfieldLayers(rcContext* ctx, const rcCompactHeightfield& chf,
|
|
int borderSize, int walkableHeight,
|
|
rcHeightfieldLayerSet& lset);
|
|
|
|
/// Builds a contour set from the region outlines in the provided compact heightfield.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] chf A fully built compact heightfield.
|
|
/// @param[in] maxError The maximum distance a simplified contour's border edges should deviate
|
|
/// the original raw contour. [Limit: >=0] [Units: wu]
|
|
/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh.
|
|
/// [Limit: >=0] [Units: vx]
|
|
/// @param[out] cset The resulting contour set. (Must be pre-allocated.)
|
|
/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf,
|
|
float maxError, int maxEdgeLen,
|
|
rcContourSet& cset, int buildFlags = RC_CONTOUR_TESS_WALL_EDGES);
|
|
|
|
/// Builds a polygon mesh from the provided contours.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] cset A fully built contour set.
|
|
/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the
|
|
/// contour to polygon conversion process. [Limit: >= 3]
|
|
/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildPolyMesh(rcContext* ctx, const rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
|
|
|
|
/// Merges multiple polygon meshes into a single mesh.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes]
|
|
/// @param[in] nmeshes The number of polygon meshes in the meshes array.
|
|
/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
|
|
|
|
/// Builds a detail mesh from the provided polygon mesh.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] mesh A fully built polygon mesh.
|
|
/// @param[in] chf The compact heightfield used to build the polygon mesh.
|
|
/// @param[in] sampleDist Sets the distance to use when sampling the heightfield. [Limit: >=0] [Units: wu]
|
|
/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from
|
|
/// heightfield data. [Limit: >=0] [Units: wu]
|
|
/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
|
|
float sampleDist, float sampleMaxError,
|
|
rcPolyMeshDetail& dmesh);
|
|
|
|
/// Copies the poly mesh data from src to dst.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] src The source mesh to copy from.
|
|
/// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst);
|
|
|
|
/// Merges multiple detail meshes into a single detail mesh.
|
|
/// @ingroup recast
|
|
/// @param[in,out] ctx The build context to use during the operation.
|
|
/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes]
|
|
/// @param[in] nmeshes The number of detail meshes in the meshes array.
|
|
/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.)
|
|
/// @returns True if the operation completed successfully.
|
|
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
|
|
|
|
/// @}
|
|
|
|
#endif // RECAST_H
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// Due to the large amount of detail documentation for this file,
|
|
// the content normally located at the end of the header file has been separated
|
|
// out to a file in /Docs/Extern.
|