mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-18 15:27:17 +01:00
423 lines
15 KiB
C++
423 lines
15 KiB
C++
#ifndef BT_NEOHOOKEAN_H
|
|
#define BT_NEOHOOKEAN_H
|
|
/*
|
|
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
|
|
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2019 Google Inc. http://bulletphysics.org
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include "btDeformableLagrangianForce.h"
|
|
#include "LinearMath/btQuickprof.h"
|
|
#include "LinearMath/btImplicitQRSVD.h"
|
|
// This energy is as described in https://graphics.pixar.com/library/StableElasticity/paper.pdf
|
|
class btDeformableNeoHookeanForce : public btDeformableLagrangianForce
|
|
{
|
|
public:
|
|
typedef btAlignedObjectArray<btVector3> TVStack;
|
|
btScalar m_mu, m_lambda; // Lame Parameters
|
|
btScalar m_E, m_nu; // Young's modulus and Poisson ratio
|
|
btScalar m_mu_damp, m_lambda_damp;
|
|
btDeformableNeoHookeanForce() : m_mu(1), m_lambda(1)
|
|
{
|
|
btScalar damping = 0.05;
|
|
m_mu_damp = damping * m_mu;
|
|
m_lambda_damp = damping * m_lambda;
|
|
updateYoungsModulusAndPoissonRatio();
|
|
}
|
|
|
|
btDeformableNeoHookeanForce(btScalar mu, btScalar lambda, btScalar damping = 0.05) : m_mu(mu), m_lambda(lambda)
|
|
{
|
|
m_mu_damp = damping * m_mu;
|
|
m_lambda_damp = damping * m_lambda;
|
|
updateYoungsModulusAndPoissonRatio();
|
|
}
|
|
|
|
void updateYoungsModulusAndPoissonRatio()
|
|
{
|
|
// conversion from Lame Parameters to Young's modulus and Poisson ratio
|
|
// https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
|
|
m_E = m_mu * (3 * m_lambda + 2 * m_mu) / (m_lambda + m_mu);
|
|
m_nu = m_lambda * 0.5 / (m_mu + m_lambda);
|
|
}
|
|
|
|
void updateLameParameters()
|
|
{
|
|
// conversion from Young's modulus and Poisson ratio to Lame Parameters
|
|
// https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
|
|
m_mu = m_E * 0.5 / (1 + m_nu);
|
|
m_lambda = m_E * m_nu / ((1 + m_nu) * (1 - 2 * m_nu));
|
|
}
|
|
|
|
void setYoungsModulus(btScalar E)
|
|
{
|
|
m_E = E;
|
|
updateLameParameters();
|
|
}
|
|
|
|
void setPoissonRatio(btScalar nu)
|
|
{
|
|
m_nu = nu;
|
|
updateLameParameters();
|
|
}
|
|
|
|
void setDamping(btScalar damping)
|
|
{
|
|
m_mu_damp = damping * m_mu;
|
|
m_lambda_damp = damping * m_lambda;
|
|
}
|
|
|
|
void setLameParameters(btScalar mu, btScalar lambda)
|
|
{
|
|
m_mu = mu;
|
|
m_lambda = lambda;
|
|
updateYoungsModulusAndPoissonRatio();
|
|
}
|
|
|
|
virtual void addScaledForces(btScalar scale, TVStack& force)
|
|
{
|
|
addScaledDampingForce(scale, force);
|
|
addScaledElasticForce(scale, force);
|
|
}
|
|
|
|
virtual void addScaledExplicitForce(btScalar scale, TVStack& force)
|
|
{
|
|
addScaledElasticForce(scale, force);
|
|
}
|
|
|
|
// The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
|
|
virtual void addScaledDampingForce(btScalar scale, TVStack& force)
|
|
{
|
|
if (m_mu_damp == 0 && m_lambda_damp == 0)
|
|
return;
|
|
int numNodes = getNumNodes();
|
|
btAssert(numNodes <= force.size());
|
|
btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
|
{
|
|
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
|
btSoftBody::Node* node0 = tetra.m_n[0];
|
|
btSoftBody::Node* node1 = tetra.m_n[1];
|
|
btSoftBody::Node* node2 = tetra.m_n[2];
|
|
btSoftBody::Node* node3 = tetra.m_n[3];
|
|
size_t id0 = node0->index;
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
size_t id3 = node3->index;
|
|
btMatrix3x3 dF = DsFromVelocity(node0, node1, node2, node3) * tetra.m_Dm_inverse;
|
|
btMatrix3x3 I;
|
|
I.setIdentity();
|
|
btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0] + dF[1][1] + dF[2][2]) * m_lambda_damp;
|
|
// firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
|
|
btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose() * grad_N_hat_1st_col);
|
|
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
|
|
|
|
// damping force differential
|
|
btScalar scale1 = scale * tetra.m_element_measure;
|
|
force[id0] -= scale1 * df_on_node0;
|
|
force[id1] -= scale1 * df_on_node123.getColumn(0);
|
|
force[id2] -= scale1 * df_on_node123.getColumn(1);
|
|
force[id3] -= scale1 * df_on_node123.getColumn(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual double totalElasticEnergy(btScalar dt)
|
|
{
|
|
double energy = 0;
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_tetraScratches.size(); ++j)
|
|
{
|
|
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
|
btSoftBody::TetraScratch& s = psb->m_tetraScratches[j];
|
|
energy += tetra.m_element_measure * elasticEnergyDensity(s);
|
|
}
|
|
}
|
|
return energy;
|
|
}
|
|
|
|
// The damping energy is formulated as in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
|
|
virtual double totalDampingEnergy(btScalar dt)
|
|
{
|
|
double energy = 0;
|
|
int sz = 0;
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
|
{
|
|
sz = btMax(sz, psb->m_nodes[j].index);
|
|
}
|
|
}
|
|
TVStack dampingForce;
|
|
dampingForce.resize(sz + 1);
|
|
for (int i = 0; i < dampingForce.size(); ++i)
|
|
dampingForce[i].setZero();
|
|
addScaledDampingForce(0.5, dampingForce);
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
|
{
|
|
const btSoftBody::Node& node = psb->m_nodes[j];
|
|
energy -= dampingForce[node.index].dot(node.m_v) / dt;
|
|
}
|
|
}
|
|
return energy;
|
|
}
|
|
|
|
double elasticEnergyDensity(const btSoftBody::TetraScratch& s)
|
|
{
|
|
double density = 0;
|
|
density += m_mu * 0.5 * (s.m_trace - 3.);
|
|
density += m_lambda * 0.5 * (s.m_J - 1. - 0.75 * m_mu / m_lambda) * (s.m_J - 1. - 0.75 * m_mu / m_lambda);
|
|
density -= m_mu * 0.5 * log(s.m_trace + 1);
|
|
return density;
|
|
}
|
|
|
|
virtual void addScaledElasticForce(btScalar scale, TVStack& force)
|
|
{
|
|
int numNodes = getNumNodes();
|
|
btAssert(numNodes <= force.size());
|
|
btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
btScalar max_p = psb->m_cfg.m_maxStress;
|
|
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
|
{
|
|
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
|
btMatrix3x3 P;
|
|
firstPiola(psb->m_tetraScratches[j], P);
|
|
#ifdef USE_SVD
|
|
if (max_p > 0)
|
|
{
|
|
// since we want to clamp the principal stress to max_p, we only need to
|
|
// calculate SVD when sigma_0^2 + sigma_1^2 + sigma_2^2 > max_p * max_p
|
|
btScalar trPTP = (P[0].length2() + P[1].length2() + P[2].length2());
|
|
if (trPTP > max_p * max_p)
|
|
{
|
|
btMatrix3x3 U, V;
|
|
btVector3 sigma;
|
|
singularValueDecomposition(P, U, sigma, V);
|
|
sigma[0] = btMin(sigma[0], max_p);
|
|
sigma[1] = btMin(sigma[1], max_p);
|
|
sigma[2] = btMin(sigma[2], max_p);
|
|
sigma[0] = btMax(sigma[0], -max_p);
|
|
sigma[1] = btMax(sigma[1], -max_p);
|
|
sigma[2] = btMax(sigma[2], -max_p);
|
|
btMatrix3x3 Sigma;
|
|
Sigma.setIdentity();
|
|
Sigma[0][0] = sigma[0];
|
|
Sigma[1][1] = sigma[1];
|
|
Sigma[2][2] = sigma[2];
|
|
P = U * Sigma * V.transpose();
|
|
}
|
|
}
|
|
#endif
|
|
// btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
|
btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose();
|
|
btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col;
|
|
|
|
btSoftBody::Node* node0 = tetra.m_n[0];
|
|
btSoftBody::Node* node1 = tetra.m_n[1];
|
|
btSoftBody::Node* node2 = tetra.m_n[2];
|
|
btSoftBody::Node* node3 = tetra.m_n[3];
|
|
size_t id0 = node0->index;
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
size_t id3 = node3->index;
|
|
|
|
// elastic force
|
|
btScalar scale1 = scale * tetra.m_element_measure;
|
|
force[id0] -= scale1 * force_on_node0;
|
|
force[id1] -= scale1 * force_on_node123.getColumn(0);
|
|
force[id2] -= scale1 * force_on_node123.getColumn(1);
|
|
force[id3] -= scale1 * force_on_node123.getColumn(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
|
|
virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
|
|
{
|
|
if (m_mu_damp == 0 && m_lambda_damp == 0)
|
|
return;
|
|
int numNodes = getNumNodes();
|
|
btAssert(numNodes <= df.size());
|
|
btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
|
{
|
|
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
|
btSoftBody::Node* node0 = tetra.m_n[0];
|
|
btSoftBody::Node* node1 = tetra.m_n[1];
|
|
btSoftBody::Node* node2 = tetra.m_n[2];
|
|
btSoftBody::Node* node3 = tetra.m_n[3];
|
|
size_t id0 = node0->index;
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
size_t id3 = node3->index;
|
|
btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse;
|
|
btMatrix3x3 I;
|
|
I.setIdentity();
|
|
btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0] + dF[1][1] + dF[2][2]) * m_lambda_damp;
|
|
// firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
|
|
// btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
|
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
|
|
btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
|
|
|
|
// damping force differential
|
|
btScalar scale1 = scale * tetra.m_element_measure;
|
|
df[id0] -= scale1 * df_on_node0;
|
|
df[id1] -= scale1 * df_on_node123.getColumn(0);
|
|
df[id2] -= scale1 * df_on_node123.getColumn(1);
|
|
df[id3] -= scale1 * df_on_node123.getColumn(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA) {}
|
|
|
|
virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
|
|
{
|
|
int numNodes = getNumNodes();
|
|
btAssert(numNodes <= df.size());
|
|
btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
|
|
for (int i = 0; i < m_softBodies.size(); ++i)
|
|
{
|
|
btSoftBody* psb = m_softBodies[i];
|
|
if (!psb->isActive())
|
|
{
|
|
continue;
|
|
}
|
|
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
|
{
|
|
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
|
btSoftBody::Node* node0 = tetra.m_n[0];
|
|
btSoftBody::Node* node1 = tetra.m_n[1];
|
|
btSoftBody::Node* node2 = tetra.m_n[2];
|
|
btSoftBody::Node* node3 = tetra.m_n[3];
|
|
size_t id0 = node0->index;
|
|
size_t id1 = node1->index;
|
|
size_t id2 = node2->index;
|
|
size_t id3 = node3->index;
|
|
btMatrix3x3 dF = Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse;
|
|
btMatrix3x3 dP;
|
|
firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP);
|
|
// btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
|
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
|
|
btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
|
|
|
|
// elastic force differential
|
|
btScalar scale1 = scale * tetra.m_element_measure;
|
|
df[id0] -= scale1 * df_on_node0;
|
|
df[id1] -= scale1 * df_on_node123.getColumn(0);
|
|
df[id2] -= scale1 * df_on_node123.getColumn(1);
|
|
df[id3] -= scale1 * df_on_node123.getColumn(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P)
|
|
{
|
|
btScalar c1 = (m_mu * (1. - 1. / (s.m_trace + 1.)));
|
|
btScalar c2 = (m_lambda * (s.m_J - 1.) - 0.75 * m_mu);
|
|
P = s.m_F * c1 + s.m_cofF * c2;
|
|
}
|
|
|
|
// Let P be the first piola stress.
|
|
// This function calculates the dP = dP/dF * dF
|
|
void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
|
|
{
|
|
btScalar c1 = m_mu * (1. - 1. / (s.m_trace + 1.));
|
|
btScalar c2 = (2. * m_mu) * DotProduct(s.m_F, dF) * (1. / ((1. + s.m_trace) * (1. + s.m_trace)));
|
|
btScalar c3 = (m_lambda * DotProduct(s.m_cofF, dF));
|
|
dP = dF * c1 + s.m_F * c2;
|
|
addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda * (s.m_J - 1.) - 0.75 * m_mu, dP);
|
|
dP += s.m_cofF * c3;
|
|
}
|
|
|
|
// Let Q be the damping stress.
|
|
// This function calculates the dP = dQ/dF * dF
|
|
void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
|
|
{
|
|
btScalar c1 = (m_mu_damp * (1. - 1. / (s.m_trace + 1.)));
|
|
btScalar c2 = ((2. * m_mu_damp) * DotProduct(s.m_F, dF) * (1. / ((1. + s.m_trace) * (1. + s.m_trace))));
|
|
btScalar c3 = (m_lambda_damp * DotProduct(s.m_cofF, dF));
|
|
dP = dF * c1 + s.m_F * c2;
|
|
addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda_damp * (s.m_J - 1.) - 0.75 * m_mu_damp, dP);
|
|
dP += s.m_cofF * c3;
|
|
}
|
|
|
|
btScalar DotProduct(const btMatrix3x3& A, const btMatrix3x3& B)
|
|
{
|
|
btScalar ans = 0;
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
ans += A[i].dot(B[i]);
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
// Let C(A) be the cofactor of the matrix A
|
|
// Let H = the derivative of C(A) with respect to A evaluated at F = A
|
|
// This function calculates H*dF
|
|
void addScaledCofactorMatrixDifferential(const btMatrix3x3& F, const btMatrix3x3& dF, btScalar scale, btMatrix3x3& M)
|
|
{
|
|
M[0][0] += scale * (dF[1][1] * F[2][2] + F[1][1] * dF[2][2] - dF[2][1] * F[1][2] - F[2][1] * dF[1][2]);
|
|
M[1][0] += scale * (dF[2][1] * F[0][2] + F[2][1] * dF[0][2] - dF[0][1] * F[2][2] - F[0][1] * dF[2][2]);
|
|
M[2][0] += scale * (dF[0][1] * F[1][2] + F[0][1] * dF[1][2] - dF[1][1] * F[0][2] - F[1][1] * dF[0][2]);
|
|
M[0][1] += scale * (dF[2][0] * F[1][2] + F[2][0] * dF[1][2] - dF[1][0] * F[2][2] - F[1][0] * dF[2][2]);
|
|
M[1][1] += scale * (dF[0][0] * F[2][2] + F[0][0] * dF[2][2] - dF[2][0] * F[0][2] - F[2][0] * dF[0][2]);
|
|
M[2][1] += scale * (dF[1][0] * F[0][2] + F[1][0] * dF[0][2] - dF[0][0] * F[1][2] - F[0][0] * dF[1][2]);
|
|
M[0][2] += scale * (dF[1][0] * F[2][1] + F[1][0] * dF[2][1] - dF[2][0] * F[1][1] - F[2][0] * dF[1][1]);
|
|
M[1][2] += scale * (dF[2][0] * F[0][1] + F[2][0] * dF[0][1] - dF[0][0] * F[2][1] - F[0][0] * dF[2][1]);
|
|
M[2][2] += scale * (dF[0][0] * F[1][1] + F[0][0] * dF[1][1] - dF[1][0] * F[0][1] - F[1][0] * dF[0][1]);
|
|
}
|
|
|
|
virtual btDeformableLagrangianForceType getForceType()
|
|
{
|
|
return BT_NEOHOOKEAN_FORCE;
|
|
}
|
|
};
|
|
#endif /* BT_NEOHOOKEAN_H */
|