pandemonium_engine/thirdparty/oidn/core/autoencoder.cpp

536 lines
19 KiB
C++

// ======================================================================== //
// Copyright 2009-2019 Intel Corporation //
// //
// Licensed under the Apache License, Version 2.0 (the "License"); //
// you may not use this file except in compliance with the License. //
// You may obtain a copy of the License at //
// //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
// Unless required by applicable law or agreed to in writing, software //
// distributed under the License is distributed on an "AS IS" BASIS, //
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
// See the License for the specific language governing permissions and //
// limitations under the License. //
// ======================================================================== //
#include "autoencoder.h"
namespace oidn {
// --------------------------------------------------------------------------
// AutoencoderFilter
// --------------------------------------------------------------------------
AutoencoderFilter::AutoencoderFilter(const Ref<Device>& device)
: Filter(device)
{
}
void AutoencoderFilter::setImage(const std::string& name, const Image& data)
{
if (name == "color")
color = data;
else if (name == "albedo")
albedo = data;
else if (name == "normal")
normal = data;
else if (name == "output")
output = data;
dirty = true;
}
void AutoencoderFilter::set1i(const std::string& name, int value)
{
if (name == "hdr")
hdr = value;
else if (name == "srgb")
srgb = value;
else if (name == "maxMemoryMB")
maxMemoryMB = value;
dirty = true;
}
int AutoencoderFilter::get1i(const std::string& name)
{
if (name == "hdr")
return hdr;
else if (name == "srgb")
return srgb;
else if (name == "maxMemoryMB")
return maxMemoryMB;
else if (name == "alignment")
return alignment;
else if (name == "overlap")
return overlap;
else
throw Exception(Error::InvalidArgument, "invalid parameter");
}
void AutoencoderFilter::set1f(const std::string& name, float value)
{
if (name == "hdrScale")
hdrScale = value;
dirty = true;
}
float AutoencoderFilter::get1f(const std::string& name)
{
if (name == "hdrScale")
return hdrScale;
else
throw Exception(Error::InvalidArgument, "invalid parameter");
}
void AutoencoderFilter::commit()
{
if (!dirty)
return;
// -- GODOT start --
//device->executeTask([&]()
//{
// GODOT end --
if (mayiuse(avx512_common))
net = buildNet<16>();
else
net = buildNet<8>();
// GODOT start --
//});
// GODOT end --
dirty = false;
}
void AutoencoderFilter::execute()
{
if (dirty)
throw Exception(Error::InvalidOperation, "changes to the filter are not committed");
if (!net)
return;
// -- GODOT start --
//device->executeTask([&]()
//{
// -- GODOT end --
Progress progress;
progress.func = progressFunc;
progress.userPtr = progressUserPtr;
progress.taskCount = tileCountH * tileCountW;
// Iterate over the tiles
int tileIndex = 0;
for (int i = 0; i < tileCountH; ++i)
{
const int h = i * (tileH - 2*overlap); // input tile position (including overlap)
const int overlapBeginH = i > 0 ? overlap : 0; // overlap on the top
const int overlapEndH = i < tileCountH-1 ? overlap : 0; // overlap on the bottom
const int tileH1 = min(H - h, tileH); // input tile size (including overlap)
const int tileH2 = tileH1 - overlapBeginH - overlapEndH; // output tile size
const int alignOffsetH = tileH - roundUp(tileH1, alignment); // align to the bottom in the tile buffer
for (int j = 0; j < tileCountW; ++j)
{
const int w = j * (tileW - 2*overlap); // input tile position (including overlap)
const int overlapBeginW = j > 0 ? overlap : 0; // overlap on the left
const int overlapEndW = j < tileCountW-1 ? overlap : 0; // overlap on the right
const int tileW1 = min(W - w, tileW); // input tile size (including overlap)
const int tileW2 = tileW1 - overlapBeginW - overlapEndW; // output tile size
const int alignOffsetW = tileW - roundUp(tileW1, alignment); // align to the right in the tile buffer
// Set the input tile
inputReorder->setTile(h, w,
alignOffsetH, alignOffsetW,
tileH1, tileW1);
// Set the output tile
outputReorder->setTile(alignOffsetH + overlapBeginH, alignOffsetW + overlapBeginW,
h + overlapBeginH, w + overlapBeginW,
tileH2, tileW2);
//printf("Tile: %d %d -> %d %d\n", w+overlapBeginW, h+overlapBeginH, w+overlapBeginW+tileW2, h+overlapBeginH+tileH2);
// Denoise the tile
net->execute(progress, tileIndex);
// Next tile
tileIndex++;
}
}
// -- GODOT start --
//});
// -- GODOT end --
}
void AutoencoderFilter::computeTileSize()
{
const int minTileSize = 3*overlap;
const int estimatedBytesPerPixel = mayiuse(avx512_common) ? estimatedBytesPerPixel16 : estimatedBytesPerPixel8;
const int64_t maxTilePixels = (int64_t(maxMemoryMB)*1024*1024 - estimatedBytesBase) / estimatedBytesPerPixel;
tileCountH = 1;
tileCountW = 1;
tileH = roundUp(H, alignment);
tileW = roundUp(W, alignment);
// Divide the image into tiles until the tile size gets below the threshold
while (int64_t(tileH) * tileW > maxTilePixels)
{
if (tileH > minTileSize && tileH > tileW)
{
tileCountH++;
tileH = max(roundUp(ceilDiv(H - 2*overlap, tileCountH), alignment) + 2*overlap, minTileSize);
}
else if (tileW > minTileSize)
{
tileCountW++;
tileW = max(roundUp(ceilDiv(W - 2*overlap, tileCountW), alignment) + 2*overlap, minTileSize);
}
else
break;
}
// Compute the final number of tiles
tileCountH = (H > tileH) ? ceilDiv(H - 2*overlap, tileH - 2*overlap) : 1;
tileCountW = (W > tileW) ? ceilDiv(W - 2*overlap, tileW - 2*overlap) : 1;
if (device->isVerbose(2))
{
std::cout << "Tile size : " << tileW << "x" << tileH << std::endl;
std::cout << "Tile count: " << tileCountW << "x" << tileCountH << std::endl;
}
}
template<int K>
std::shared_ptr<Executable> AutoencoderFilter::buildNet()
{
H = color.height;
W = color.width;
// Configure the network
int inputC;
void* weightPtr;
if (srgb && hdr)
throw Exception(Error::InvalidOperation, "srgb and hdr modes cannot be enabled at the same time");
if (color && !albedo && !normal && weightData.hdr)
{
inputC = 3;
weightPtr = hdr ? weightData.hdr : weightData.ldr;
}
else if (color && albedo && !normal && weightData.hdr_alb)
{
inputC = 6;
weightPtr = hdr ? weightData.hdr_alb : weightData.ldr_alb;
}
else if (color && albedo && normal && weightData.hdr_alb_nrm)
{
inputC = 9;
weightPtr = hdr ? weightData.hdr_alb_nrm : weightData.ldr_alb_nrm;
}
else
{
throw Exception(Error::InvalidOperation, "unsupported combination of input features");
}
if (!output)
throw Exception(Error::InvalidOperation, "output image not specified");
if ((color.format != Format::Float3)
|| (albedo && albedo.format != Format::Float3)
|| (normal && normal.format != Format::Float3)
|| (output.format != Format::Float3))
throw Exception(Error::InvalidOperation, "unsupported image format");
if ((albedo && (albedo.width != W || albedo.height != H))
|| (normal && (normal.width != W || normal.height != H))
|| (output.width != W || output.height != H))
throw Exception(Error::InvalidOperation, "image size mismatch");
// Compute the tile size
computeTileSize();
// If the image size is zero, there is nothing else to do
if (H <= 0 || W <= 0)
return nullptr;
// Parse the weights
const auto weightMap = parseTensors(weightPtr);
// Create the network
std::shared_ptr<Network<K>> net = std::make_shared<Network<K>>(device, weightMap);
// Compute the tensor sizes
const auto inputDims = memory::dims({1, inputC, tileH, tileW});
const auto inputReorderDims = net->getInputReorderDims(inputDims, alignment); //-> concat0
const auto conv1Dims = net->getConvDims("conv1", inputReorderDims); //-> temp0
const auto conv1bDims = net->getConvDims("conv1b", conv1Dims); //-> temp1
const auto pool1Dims = net->getPoolDims(conv1bDims); //-> concat1
const auto conv2Dims = net->getConvDims("conv2", pool1Dims); //-> temp0
const auto pool2Dims = net->getPoolDims(conv2Dims); //-> concat2
const auto conv3Dims = net->getConvDims("conv3", pool2Dims); //-> temp0
const auto pool3Dims = net->getPoolDims(conv3Dims); //-> concat3
const auto conv4Dims = net->getConvDims("conv4", pool3Dims); //-> temp0
const auto pool4Dims = net->getPoolDims(conv4Dims); //-> concat4
const auto conv5Dims = net->getConvDims("conv5", pool4Dims); //-> temp0
const auto pool5Dims = net->getPoolDims(conv5Dims); //-> temp1
const auto upsample4Dims = net->getUpsampleDims(pool5Dims); //-> concat4
const auto concat4Dims = net->getConcatDims(upsample4Dims, pool4Dims);
const auto conv6Dims = net->getConvDims("conv6", concat4Dims); //-> temp0
const auto conv6bDims = net->getConvDims("conv6b", conv6Dims); //-> temp1
const auto upsample3Dims = net->getUpsampleDims(conv6bDims); //-> concat3
const auto concat3Dims = net->getConcatDims(upsample3Dims, pool3Dims);
const auto conv7Dims = net->getConvDims("conv7", concat3Dims); //-> temp0
const auto conv7bDims = net->getConvDims("conv7b", conv7Dims); //-> temp1
const auto upsample2Dims = net->getUpsampleDims(conv7bDims); //-> concat2
const auto concat2Dims = net->getConcatDims(upsample2Dims, pool2Dims);
const auto conv8Dims = net->getConvDims("conv8", concat2Dims); //-> temp0
const auto conv8bDims = net->getConvDims("conv8b", conv8Dims); //-> temp1
const auto upsample1Dims = net->getUpsampleDims(conv8bDims); //-> concat1
const auto concat1Dims = net->getConcatDims(upsample1Dims, pool1Dims);
const auto conv9Dims = net->getConvDims("conv9", concat1Dims); //-> temp0
const auto conv9bDims = net->getConvDims("conv9b", conv9Dims); //-> temp1
const auto upsample0Dims = net->getUpsampleDims(conv9bDims); //-> concat0
const auto concat0Dims = net->getConcatDims(upsample0Dims, inputReorderDims);
const auto conv10Dims = net->getConvDims("conv10", concat0Dims); //-> temp0
const auto conv10bDims = net->getConvDims("conv10b", conv10Dims); //-> temp1
const auto conv11Dims = net->getConvDims("conv11", conv10bDims); //-> temp0
const auto outputDims = memory::dims({1, 3, tileH, tileW});
// Allocate two temporary ping-pong buffers to decrease memory usage
const auto temp0Dims = getMaxTensorDims({
conv1Dims,
conv2Dims,
conv3Dims,
conv4Dims,
conv5Dims,
conv6Dims,
conv7Dims,
conv8Dims,
conv9Dims,
conv10Dims,
conv11Dims
});
const auto temp1Dims = getMaxTensorDims({
conv1bDims,
pool5Dims,
conv6bDims,
conv7bDims,
conv8bDims,
conv9bDims,
conv10bDims,
});
auto temp0 = net->allocTensor(temp0Dims);
auto temp1 = net->allocTensor(temp1Dims);
// Allocate enough memory to hold the concat outputs. Then use the first
// half to hold the previous conv output and the second half to hold the
// pool/orig image output. This works because everything is C dimension
// outermost, padded to K floats, and all the concats are on the C dimension.
auto concat0Dst = net->allocTensor(concat0Dims);
auto concat1Dst = net->allocTensor(concat1Dims);
auto concat2Dst = net->allocTensor(concat2Dims);
auto concat3Dst = net->allocTensor(concat3Dims);
auto concat4Dst = net->allocTensor(concat4Dims);
// Transfer function
std::shared_ptr<TransferFunction> transferFunc = makeTransferFunc();
// Autoexposure
if (auto tf = std::dynamic_pointer_cast<HDRTransferFunction>(transferFunc))
{
if (isnan(hdrScale))
net->addAutoexposure(color, tf);
else
tf->setExposure(hdrScale);
}
// Input reorder
auto inputReorderDst = net->castTensor(inputReorderDims, concat0Dst, upsample0Dims);
inputReorder = net->addInputReorder(color, albedo, normal,
transferFunc,
alignment, inputReorderDst);
// conv1
auto conv1 = net->addConv("conv1", inputReorder->getDst(), temp0);
// conv1b
auto conv1b = net->addConv("conv1b", conv1->getDst(), temp1);
// pool1
// Adjust pointer for pool1 to eliminate concat1
auto pool1Dst = net->castTensor(pool1Dims, concat1Dst, upsample1Dims);
auto pool1 = net->addPool(conv1b->getDst(), pool1Dst);
// conv2
auto conv2 = net->addConv("conv2", pool1->getDst(), temp0);
// pool2
// Adjust pointer for pool2 to eliminate concat2
auto pool2Dst = net->castTensor(pool2Dims, concat2Dst, upsample2Dims);
auto pool2 = net->addPool(conv2->getDst(), pool2Dst);
// conv3
auto conv3 = net->addConv("conv3", pool2->getDst(), temp0);
// pool3
// Adjust pointer for pool3 to eliminate concat3
auto pool3Dst = net->castTensor(pool3Dims, concat3Dst, upsample3Dims);
auto pool3 = net->addPool(conv3->getDst(), pool3Dst);
// conv4
auto conv4 = net->addConv("conv4", pool3->getDst(), temp0);
// pool4
// Adjust pointer for pool4 to eliminate concat4
auto pool4Dst = net->castTensor(pool4Dims, concat4Dst, upsample4Dims);
auto pool4 = net->addPool(conv4->getDst(), pool4Dst);
// conv5
auto conv5 = net->addConv("conv5", pool4->getDst(), temp0);
// pool5
auto pool5 = net->addPool(conv5->getDst(), temp1);
// upsample4
auto upsample4Dst = net->castTensor(upsample4Dims, concat4Dst);
auto upsample4 = net->addUpsample(pool5->getDst(), upsample4Dst);
// conv6
auto conv6 = net->addConv("conv6", concat4Dst, temp0);
// conv6b
auto conv6b = net->addConv("conv6b", conv6->getDst(), temp1);
// upsample3
auto upsample3Dst = net->castTensor(upsample3Dims, concat3Dst);
auto upsample3 = net->addUpsample(conv6b->getDst(), upsample3Dst);
// conv7
auto conv7 = net->addConv("conv7", concat3Dst, temp0);
// conv7b
auto conv7b = net->addConv("conv7b", conv7->getDst(), temp1);
// upsample2
auto upsample2Dst = net->castTensor(upsample2Dims, concat2Dst);
auto upsample2 = net->addUpsample(conv7b->getDst(), upsample2Dst);
// conv8
auto conv8 = net->addConv("conv8", concat2Dst, temp0);
// conv8b
auto conv8b = net->addConv("conv8b", conv8->getDst(), temp1);
// upsample1
auto upsample1Dst = net->castTensor(upsample1Dims, concat1Dst);
auto upsample1 = net->addUpsample(conv8b->getDst(), upsample1Dst);
// conv9
auto conv9 = net->addConv("conv9", concat1Dst, temp0);
// conv9b
auto conv9b = net->addConv("conv9b", conv9->getDst(), temp1);
// upsample0
auto upsample0Dst = net->castTensor(upsample0Dims, concat0Dst);
auto upsample0 = net->addUpsample(conv9b->getDst(), upsample0Dst);
// conv10
auto conv10 = net->addConv("conv10", concat0Dst, temp0);
// conv10b
auto conv10b = net->addConv("conv10b", conv10->getDst(), temp1);
// conv11
auto conv11 = net->addConv("conv11", conv10b->getDst(), temp0, false /* no relu */);
// Output reorder
outputReorder = net->addOutputReorder(conv11->getDst(), transferFunc, output);
net->finalize();
return net;
}
std::shared_ptr<TransferFunction> AutoencoderFilter::makeTransferFunc()
{
if (hdr)
return std::make_shared<PQXTransferFunction>();
else if (srgb)
return std::make_shared<LinearTransferFunction>();
else
return std::make_shared<GammaTransferFunction>();
}
// -- GODOT start --
// Godot doesn't need Raytracing filters. Removing them saves space in the weights files.
#if 0
// -- GODOT end --
// --------------------------------------------------------------------------
// RTFilter
// --------------------------------------------------------------------------
namespace weights
{
// LDR
extern unsigned char rt_ldr[]; // color
extern unsigned char rt_ldr_alb[]; // color, albedo
extern unsigned char rt_ldr_alb_nrm[]; // color, albedo, normal
// HDR
extern unsigned char rt_hdr[]; // color
extern unsigned char rt_hdr_alb[]; // color, albedo
extern unsigned char rt_hdr_alb_nrm[]; // color, albedo, normal
}
RTFilter::RTFilter(const Ref<Device>& device)
: AutoencoderFilter(device)
{
weightData.ldr = weights::rt_ldr;
weightData.ldr_alb = weights::rt_ldr_alb;
weightData.ldr_alb_nrm = weights::rt_ldr_alb_nrm;
weightData.hdr = weights::rt_hdr;
weightData.hdr_alb = weights::rt_hdr_alb;
weightData.hdr_alb_nrm = weights::rt_hdr_alb_nrm;
}
// -- GODOT start --
#endif
// -- GODOT end --
// --------------------------------------------------------------------------
// RTLightmapFilter
// --------------------------------------------------------------------------
namespace weights
{
// HDR
extern unsigned char rtlightmap_hdr[]; // color
}
RTLightmapFilter::RTLightmapFilter(const Ref<Device>& device)
: AutoencoderFilter(device)
{
weightData.hdr = weights::rtlightmap_hdr;
hdr = true;
}
std::shared_ptr<TransferFunction> RTLightmapFilter::makeTransferFunc()
{
return std::make_shared<LogTransferFunction>();
}
} // namespace oidn