mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-18 15:27:17 +01:00
1432 lines
44 KiB
C++
1432 lines
44 KiB
C++
/*
|
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans https://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_MATRIX3x3_H
|
|
#define BT_MATRIX3x3_H
|
|
|
|
#include "btVector3.h"
|
|
#include "btQuaternion.h"
|
|
#include <stdio.h>
|
|
|
|
#ifdef BT_USE_SSE
|
|
//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
|
|
//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
|
|
#define vMPPP (_mm_set_ps(+0.0f, +0.0f, +0.0f, -0.0f))
|
|
#endif
|
|
|
|
#if defined(BT_USE_SSE)
|
|
#define v0000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f))
|
|
#define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f))
|
|
#define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f))
|
|
#define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f))
|
|
#elif defined(BT_USE_NEON)
|
|
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0000) = {0.0f, 0.0f, 0.0f, 0.0f};
|
|
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
|
|
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
|
|
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
|
|
#endif
|
|
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define btMatrix3x3Data btMatrix3x3DoubleData
|
|
#else
|
|
#define btMatrix3x3Data btMatrix3x3FloatData
|
|
#endif //BT_USE_DOUBLE_PRECISION
|
|
|
|
/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
|
|
* Make sure to only include a pure orthogonal matrix without scaling. */
|
|
ATTRIBUTE_ALIGNED16(class)
|
|
btMatrix3x3
|
|
{
|
|
///Data storage for the matrix, each vector is a row of the matrix
|
|
btVector3 m_el[3];
|
|
|
|
public:
|
|
/** @brief No initializaion constructor */
|
|
btMatrix3x3() {}
|
|
|
|
// explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
|
|
|
|
/**@brief Constructor from Quaternion */
|
|
explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
|
|
/*
|
|
template <typename btScalar>
|
|
Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
|
{
|
|
setEulerYPR(yaw, pitch, roll);
|
|
}
|
|
*/
|
|
/** @brief Constructor with row major formatting */
|
|
btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
|
|
const btScalar& yx, const btScalar& yy, const btScalar& yz,
|
|
const btScalar& zx, const btScalar& zy, const btScalar& zz)
|
|
{
|
|
setValue(xx, xy, xz,
|
|
yx, yy, yz,
|
|
zx, zy, zz);
|
|
}
|
|
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
SIMD_FORCE_INLINE btMatrix3x3(const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2)
|
|
{
|
|
m_el[0].mVec128 = v0;
|
|
m_el[1].mVec128 = v1;
|
|
m_el[2].mVec128 = v2;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
|
|
{
|
|
m_el[0] = v0;
|
|
m_el[1] = v1;
|
|
m_el[2] = v2;
|
|
}
|
|
|
|
// Copy constructor
|
|
SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
|
|
{
|
|
m_el[0].mVec128 = rhs.m_el[0].mVec128;
|
|
m_el[1].mVec128 = rhs.m_el[1].mVec128;
|
|
m_el[2].mVec128 = rhs.m_el[2].mVec128;
|
|
}
|
|
|
|
// Assignment Operator
|
|
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
|
|
{
|
|
m_el[0].mVec128 = m.m_el[0].mVec128;
|
|
m_el[1].mVec128 = m.m_el[1].mVec128;
|
|
m_el[2].mVec128 = m.m_el[2].mVec128;
|
|
|
|
return *this;
|
|
}
|
|
|
|
#else
|
|
|
|
/** @brief Copy constructor */
|
|
SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& other)
|
|
{
|
|
m_el[0] = other.m_el[0];
|
|
m_el[1] = other.m_el[1];
|
|
m_el[2] = other.m_el[2];
|
|
}
|
|
|
|
/** @brief Assignment Operator */
|
|
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
|
|
{
|
|
m_el[0] = other.m_el[0];
|
|
m_el[1] = other.m_el[1];
|
|
m_el[2] = other.m_el[2];
|
|
return *this;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
|
|
{
|
|
m_el[0] = v0;
|
|
m_el[1] = v1;
|
|
m_el[2] = v2;
|
|
}
|
|
|
|
#endif
|
|
|
|
/** @brief Get a column of the matrix as a vector
|
|
* @param i Column number 0 indexed */
|
|
SIMD_FORCE_INLINE btVector3 getColumn(int i) const
|
|
{
|
|
return btVector3(m_el[0][i], m_el[1][i], m_el[2][i]);
|
|
}
|
|
|
|
/** @brief Get a row of the matrix as a vector
|
|
* @param i Row number 0 indexed */
|
|
SIMD_FORCE_INLINE const btVector3& getRow(int i) const
|
|
{
|
|
btFullAssert(0 <= i && i < 3);
|
|
return m_el[i];
|
|
}
|
|
|
|
/** @brief Get a mutable reference to a row of the matrix as a vector
|
|
* @param i Row number 0 indexed */
|
|
SIMD_FORCE_INLINE btVector3& operator[](int i)
|
|
{
|
|
btFullAssert(0 <= i && i < 3);
|
|
return m_el[i];
|
|
}
|
|
|
|
/** @brief Get a const reference to a row of the matrix as a vector
|
|
* @param i Row number 0 indexed */
|
|
SIMD_FORCE_INLINE const btVector3& operator[](int i) const
|
|
{
|
|
btFullAssert(0 <= i && i < 3);
|
|
return m_el[i];
|
|
}
|
|
|
|
/** @brief Multiply by the target matrix on the right
|
|
* @param m Rotation matrix to be applied
|
|
* Equivilant to this = this * m */
|
|
btMatrix3x3& operator*=(const btMatrix3x3& m);
|
|
|
|
/** @brief Adds by the target matrix on the right
|
|
* @param m matrix to be applied
|
|
* Equivilant to this = this + m */
|
|
btMatrix3x3& operator+=(const btMatrix3x3& m);
|
|
|
|
/** @brief Substractss by the target matrix on the right
|
|
* @param m matrix to be applied
|
|
* Equivilant to this = this - m */
|
|
btMatrix3x3& operator-=(const btMatrix3x3& m);
|
|
|
|
/** @brief Set from the rotational part of a 4x4 OpenGL matrix
|
|
* @param m A pointer to the beginning of the array of scalars*/
|
|
void setFromOpenGLSubMatrix(const btScalar* m)
|
|
{
|
|
m_el[0].setValue(m[0], m[4], m[8]);
|
|
m_el[1].setValue(m[1], m[5], m[9]);
|
|
m_el[2].setValue(m[2], m[6], m[10]);
|
|
}
|
|
/** @brief Set the values of the matrix explicitly (row major)
|
|
* @param xx Top left
|
|
* @param xy Top Middle
|
|
* @param xz Top Right
|
|
* @param yx Middle Left
|
|
* @param yy Middle Middle
|
|
* @param yz Middle Right
|
|
* @param zx Bottom Left
|
|
* @param zy Bottom Middle
|
|
* @param zz Bottom Right*/
|
|
void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
|
|
const btScalar& yx, const btScalar& yy, const btScalar& yz,
|
|
const btScalar& zx, const btScalar& zy, const btScalar& zz)
|
|
{
|
|
m_el[0].setValue(xx, xy, xz);
|
|
m_el[1].setValue(yx, yy, yz);
|
|
m_el[2].setValue(zx, zy, zz);
|
|
}
|
|
|
|
/** @brief Set the matrix from a quaternion
|
|
* @param q The Quaternion to match */
|
|
void setRotation(const btQuaternion& q)
|
|
{
|
|
btScalar d = q.length2();
|
|
btFullAssert(d != btScalar(0.0));
|
|
btScalar s = btScalar(2.0) / d;
|
|
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
|
|
__m128 vs, Q = q.get128();
|
|
__m128i Qi = btCastfTo128i(Q);
|
|
__m128 Y, Z;
|
|
__m128 V1, V2, V3;
|
|
__m128 V11, V21, V31;
|
|
__m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
|
|
__m128i NQi = btCastfTo128i(NQ);
|
|
|
|
V1 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 2, 3))); // Y X Z W
|
|
V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0, 0, 1, 3)); // -X -X Y W
|
|
V3 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(2, 1, 0, 3))); // Z Y X W
|
|
V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
|
|
|
|
V11 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 1, 0, 3))); // Y Y X W
|
|
V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
|
|
V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0, 2, 0, 3)); // X Z -X -W
|
|
|
|
V2 = V2 * V1; //
|
|
V1 = V1 * V11; //
|
|
V3 = V3 * V31; //
|
|
|
|
V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2, 3, 1, 3)); // -Z -W Y W
|
|
V11 = V11 * V21; //
|
|
V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
|
|
V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3, 3, 1, 3)); // W W -Y -W
|
|
V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
|
|
Y = btCastiTo128f(_mm_shuffle_epi32(NQi, BT_SHUFFLE(3, 2, 0, 3))); // -W -Z -X -W
|
|
Z = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 1, 3))); // Y X Y W
|
|
|
|
vs = _mm_load_ss(&s);
|
|
V21 = V21 * Y;
|
|
V31 = V31 * Z;
|
|
|
|
V1 = V1 + V11;
|
|
V2 = V2 + V21;
|
|
V3 = V3 + V31;
|
|
|
|
vs = bt_splat3_ps(vs, 0);
|
|
// s ready
|
|
V1 = V1 * vs;
|
|
V2 = V2 * vs;
|
|
V3 = V3 * vs;
|
|
|
|
V1 = V1 + v1000;
|
|
V2 = V2 + v0100;
|
|
V3 = V3 + v0010;
|
|
|
|
m_el[0] = V1;
|
|
m_el[1] = V2;
|
|
m_el[2] = V3;
|
|
#else
|
|
btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
|
|
btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
|
|
btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
|
|
btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
|
|
setValue(
|
|
btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
|
|
xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
|
|
xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
|
|
#endif
|
|
}
|
|
|
|
/** @brief Set the matrix from euler angles using YPR around YXZ respectively
|
|
* @param yaw Yaw about Y axis
|
|
* @param pitch Pitch about X axis
|
|
* @param roll Roll about Z axis
|
|
*/
|
|
void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
|
{
|
|
setEulerZYX(roll, pitch, yaw);
|
|
}
|
|
|
|
/** @brief Set the matrix from euler angles YPR around ZYX axes
|
|
* @param eulerX Roll about X axis
|
|
* @param eulerY Pitch around Y axis
|
|
* @param eulerZ Yaw about Z axis
|
|
*
|
|
* These angles are used to produce a rotation matrix. The euler
|
|
* angles are applied in ZYX order. I.e a vector is first rotated
|
|
* about X then Y and then Z
|
|
**/
|
|
void setEulerZYX(btScalar eulerX, btScalar eulerY, btScalar eulerZ)
|
|
{
|
|
///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
|
|
btScalar ci(btCos(eulerX));
|
|
btScalar cj(btCos(eulerY));
|
|
btScalar ch(btCos(eulerZ));
|
|
btScalar si(btSin(eulerX));
|
|
btScalar sj(btSin(eulerY));
|
|
btScalar sh(btSin(eulerZ));
|
|
btScalar cc = ci * ch;
|
|
btScalar cs = ci * sh;
|
|
btScalar sc = si * ch;
|
|
btScalar ss = si * sh;
|
|
|
|
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
|
|
cj * sh, sj * ss + cc, sj * cs - sc,
|
|
-sj, cj * si, cj * ci);
|
|
}
|
|
|
|
/**@brief Set the matrix to the identity */
|
|
void setIdentity()
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
m_el[0] = v1000;
|
|
m_el[1] = v0100;
|
|
m_el[2] = v0010;
|
|
#else
|
|
setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(1.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
|
#endif
|
|
}
|
|
|
|
/**@brief Set the matrix to the identity */
|
|
void setZero()
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
m_el[0] = v0000;
|
|
m_el[1] = v0000;
|
|
m_el[2] = v0000;
|
|
#else
|
|
setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(0.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(0.0), btScalar(0.0));
|
|
#endif
|
|
}
|
|
|
|
static const btMatrix3x3& getIdentity()
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
static const btMatrix3x3
|
|
identityMatrix(v1000, v0100, v0010);
|
|
#else
|
|
static const btMatrix3x3
|
|
identityMatrix(
|
|
btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(1.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
|
#endif
|
|
return identityMatrix;
|
|
}
|
|
|
|
/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
|
|
* @param m The array to be filled */
|
|
void getOpenGLSubMatrix(btScalar * m) const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
|
|
__m128 v0 = m_el[0].mVec128;
|
|
__m128 v1 = m_el[1].mVec128;
|
|
__m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
|
|
__m128* vm = (__m128*)m;
|
|
__m128 vT;
|
|
|
|
v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
|
|
|
|
vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
|
|
v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
|
|
|
|
v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
|
|
v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
|
|
v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
|
|
|
|
vm[0] = v0;
|
|
vm[1] = v1;
|
|
vm[2] = v2;
|
|
#elif defined(BT_USE_NEON)
|
|
// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
|
|
static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
|
|
float32x4_t* vm = (float32x4_t*)m;
|
|
float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
|
|
float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
|
|
float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
|
|
float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
|
|
float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
|
|
float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
|
|
|
|
vm[0] = v0;
|
|
vm[1] = v1;
|
|
vm[2] = v2;
|
|
#else
|
|
m[0] = btScalar(m_el[0].x());
|
|
m[1] = btScalar(m_el[1].x());
|
|
m[2] = btScalar(m_el[2].x());
|
|
m[3] = btScalar(0.0);
|
|
m[4] = btScalar(m_el[0].y());
|
|
m[5] = btScalar(m_el[1].y());
|
|
m[6] = btScalar(m_el[2].y());
|
|
m[7] = btScalar(0.0);
|
|
m[8] = btScalar(m_el[0].z());
|
|
m[9] = btScalar(m_el[1].z());
|
|
m[10] = btScalar(m_el[2].z());
|
|
m[11] = btScalar(0.0);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Get the matrix represented as a quaternion
|
|
* @param q The quaternion which will be set */
|
|
void getRotation(btQuaternion & q) const
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
|
|
btScalar s, x;
|
|
|
|
union {
|
|
btSimdFloat4 vec;
|
|
btScalar f[4];
|
|
} temp;
|
|
|
|
if (trace > btScalar(0.0))
|
|
{
|
|
x = trace + btScalar(1.0);
|
|
|
|
temp.f[0] = m_el[2].y() - m_el[1].z();
|
|
temp.f[1] = m_el[0].z() - m_el[2].x();
|
|
temp.f[2] = m_el[1].x() - m_el[0].y();
|
|
temp.f[3] = x;
|
|
//temp.f[3]= s * btScalar(0.5);
|
|
}
|
|
else
|
|
{
|
|
int i, j, k;
|
|
if (m_el[0].x() < m_el[1].y())
|
|
{
|
|
if (m_el[1].y() < m_el[2].z())
|
|
{
|
|
i = 2;
|
|
j = 0;
|
|
k = 1;
|
|
}
|
|
else
|
|
{
|
|
i = 1;
|
|
j = 2;
|
|
k = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (m_el[0].x() < m_el[2].z())
|
|
{
|
|
i = 2;
|
|
j = 0;
|
|
k = 1;
|
|
}
|
|
else
|
|
{
|
|
i = 0;
|
|
j = 1;
|
|
k = 2;
|
|
}
|
|
}
|
|
|
|
x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
|
|
|
|
temp.f[3] = (m_el[k][j] - m_el[j][k]);
|
|
temp.f[j] = (m_el[j][i] + m_el[i][j]);
|
|
temp.f[k] = (m_el[k][i] + m_el[i][k]);
|
|
temp.f[i] = x;
|
|
//temp.f[i] = s * btScalar(0.5);
|
|
}
|
|
|
|
s = btSqrt(x);
|
|
q.set128(temp.vec);
|
|
s = btScalar(0.5) / s;
|
|
|
|
q *= s;
|
|
#else
|
|
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
|
|
|
|
btScalar temp[4];
|
|
|
|
if (trace > btScalar(0.0))
|
|
{
|
|
btScalar s = btSqrt(trace + btScalar(1.0));
|
|
temp[3] = (s * btScalar(0.5));
|
|
s = btScalar(0.5) / s;
|
|
|
|
temp[0] = ((m_el[2].y() - m_el[1].z()) * s);
|
|
temp[1] = ((m_el[0].z() - m_el[2].x()) * s);
|
|
temp[2] = ((m_el[1].x() - m_el[0].y()) * s);
|
|
}
|
|
else
|
|
{
|
|
int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0);
|
|
int j = (i + 1) % 3;
|
|
int k = (i + 2) % 3;
|
|
|
|
btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
|
|
temp[i] = s * btScalar(0.5);
|
|
s = btScalar(0.5) / s;
|
|
|
|
temp[3] = (m_el[k][j] - m_el[j][k]) * s;
|
|
temp[j] = (m_el[j][i] + m_el[i][j]) * s;
|
|
temp[k] = (m_el[k][i] + m_el[i][k]) * s;
|
|
}
|
|
q.setValue(temp[0], temp[1], temp[2], temp[3]);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
|
|
* @param yaw Yaw around Y axis
|
|
* @param pitch Pitch around X axis
|
|
* @param roll around Z axis */
|
|
void getEulerYPR(btScalar & yaw, btScalar & pitch, btScalar & roll) const
|
|
{
|
|
// first use the normal calculus
|
|
yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
|
|
pitch = btScalar(btAsin(-m_el[2].x()));
|
|
roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
|
|
|
|
// on pitch = +/-HalfPI
|
|
if (btFabs(pitch) == SIMD_HALF_PI)
|
|
{
|
|
if (yaw > 0)
|
|
yaw -= SIMD_PI;
|
|
else
|
|
yaw += SIMD_PI;
|
|
|
|
if (roll > 0)
|
|
roll -= SIMD_PI;
|
|
else
|
|
roll += SIMD_PI;
|
|
}
|
|
};
|
|
|
|
/**@brief Get the matrix represented as euler angles around ZYX
|
|
* @param yaw Yaw around Z axis
|
|
* @param pitch Pitch around Y axis
|
|
* @param roll around X axis
|
|
* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
|
|
void getEulerZYX(btScalar & yaw, btScalar & pitch, btScalar & roll, unsigned int solution_number = 1) const
|
|
{
|
|
struct Euler
|
|
{
|
|
btScalar yaw;
|
|
btScalar pitch;
|
|
btScalar roll;
|
|
};
|
|
|
|
Euler euler_out;
|
|
Euler euler_out2; //second solution
|
|
//get the pointer to the raw data
|
|
|
|
// Check that pitch is not at a singularity
|
|
if (btFabs(m_el[2].x()) >= 1)
|
|
{
|
|
euler_out.yaw = 0;
|
|
euler_out2.yaw = 0;
|
|
|
|
// From difference of angles formula
|
|
btScalar delta = btAtan2(m_el[0].x(), m_el[0].z());
|
|
if (m_el[2].x() > 0) //gimbal locked up
|
|
{
|
|
euler_out.pitch = SIMD_PI / btScalar(2.0);
|
|
euler_out2.pitch = SIMD_PI / btScalar(2.0);
|
|
euler_out.roll = euler_out.pitch + delta;
|
|
euler_out2.roll = euler_out.pitch + delta;
|
|
}
|
|
else // gimbal locked down
|
|
{
|
|
euler_out.pitch = -SIMD_PI / btScalar(2.0);
|
|
euler_out2.pitch = -SIMD_PI / btScalar(2.0);
|
|
euler_out.roll = -euler_out.pitch + delta;
|
|
euler_out2.roll = -euler_out.pitch + delta;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
euler_out.pitch = -btAsin(m_el[2].x());
|
|
euler_out2.pitch = SIMD_PI - euler_out.pitch;
|
|
|
|
euler_out.roll = btAtan2(m_el[2].y() / btCos(euler_out.pitch),
|
|
m_el[2].z() / btCos(euler_out.pitch));
|
|
euler_out2.roll = btAtan2(m_el[2].y() / btCos(euler_out2.pitch),
|
|
m_el[2].z() / btCos(euler_out2.pitch));
|
|
|
|
euler_out.yaw = btAtan2(m_el[1].x() / btCos(euler_out.pitch),
|
|
m_el[0].x() / btCos(euler_out.pitch));
|
|
euler_out2.yaw = btAtan2(m_el[1].x() / btCos(euler_out2.pitch),
|
|
m_el[0].x() / btCos(euler_out2.pitch));
|
|
}
|
|
|
|
if (solution_number == 1)
|
|
{
|
|
yaw = euler_out.yaw;
|
|
pitch = euler_out.pitch;
|
|
roll = euler_out.roll;
|
|
}
|
|
else
|
|
{
|
|
yaw = euler_out2.yaw;
|
|
pitch = euler_out2.pitch;
|
|
roll = euler_out2.roll;
|
|
}
|
|
}
|
|
|
|
/**@brief Create a scaled copy of the matrix
|
|
* @param s Scaling vector The elements of the vector will scale each column */
|
|
|
|
btMatrix3x3 scaled(const btVector3& s) const
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
|
|
#else
|
|
return btMatrix3x3(
|
|
m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
|
|
m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
|
|
m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the determinant of the matrix */
|
|
btScalar determinant() const;
|
|
/**@brief Return the adjoint of the matrix */
|
|
btMatrix3x3 adjoint() const;
|
|
/**@brief Return the matrix with all values non negative */
|
|
btMatrix3x3 absolute() const;
|
|
/**@brief Return the transpose of the matrix */
|
|
btMatrix3x3 transpose() const;
|
|
/**@brief Return the inverse of the matrix */
|
|
btMatrix3x3 inverse() const;
|
|
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases.
|
|
///Solve33 is from Box2d, thanks to Erin Catto,
|
|
btVector3 solve33(const btVector3& b) const
|
|
{
|
|
btVector3 col1 = getColumn(0);
|
|
btVector3 col2 = getColumn(1);
|
|
btVector3 col3 = getColumn(2);
|
|
|
|
btScalar det = btDot(col1, btCross(col2, col3));
|
|
if (btFabs(det) > SIMD_EPSILON)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
btVector3 x;
|
|
x[0] = det * btDot(b, btCross(col2, col3));
|
|
x[1] = det * btDot(col1, btCross(b, col3));
|
|
x[2] = det * btDot(col1, btCross(col2, b));
|
|
return x;
|
|
}
|
|
|
|
btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
|
|
btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
|
|
|
|
SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
|
|
{
|
|
return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
|
|
}
|
|
SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
|
|
{
|
|
return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
|
|
}
|
|
SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
|
|
{
|
|
return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
|
|
}
|
|
|
|
///extractRotation is from "A robust method to extract the rotational part of deformations"
|
|
///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
|
|
///decomposes a matrix A in a orthogonal matrix R and a
|
|
///symmetric matrix S:
|
|
///A = R*S.
|
|
///note that R can include both rotation and scaling.
|
|
SIMD_FORCE_INLINE void extractRotation(btQuaternion & q, btScalar tolerance = 1.0e-9, int maxIter = 100)
|
|
{
|
|
int iter = 0;
|
|
btScalar w;
|
|
const btMatrix3x3& A = *this;
|
|
for (iter = 0; iter < maxIter; iter++)
|
|
{
|
|
btMatrix3x3 R(q);
|
|
btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + R.getColumn(2).cross(A.getColumn(2))) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
|
|
tolerance);
|
|
w = omega.norm();
|
|
if (w < tolerance)
|
|
break;
|
|
q = btQuaternion(btVector3((btScalar(1.0) / w) * omega), w) *
|
|
q;
|
|
q.normalize();
|
|
}
|
|
}
|
|
|
|
/**@brief diagonalizes this matrix by the Jacobi method.
|
|
* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
|
|
* coordinate system, i.e., old_this = rot * new_this * rot^T.
|
|
* @param threshold See iteration
|
|
* @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
|
|
* by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
|
|
*
|
|
* Note that this matrix is assumed to be symmetric.
|
|
*/
|
|
void diagonalize(btMatrix3x3 & rot, btScalar threshold, int maxSteps)
|
|
{
|
|
rot.setIdentity();
|
|
for (int step = maxSteps; step > 0; step--)
|
|
{
|
|
// find off-diagonal element [p][q] with largest magnitude
|
|
int p = 0;
|
|
int q = 1;
|
|
int r = 2;
|
|
btScalar max = btFabs(m_el[0][1]);
|
|
btScalar v = btFabs(m_el[0][2]);
|
|
if (v > max)
|
|
{
|
|
q = 2;
|
|
r = 1;
|
|
max = v;
|
|
}
|
|
v = btFabs(m_el[1][2]);
|
|
if (v > max)
|
|
{
|
|
p = 1;
|
|
q = 2;
|
|
r = 0;
|
|
max = v;
|
|
}
|
|
|
|
btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
|
|
if (max <= t)
|
|
{
|
|
if (max <= SIMD_EPSILON * t)
|
|
{
|
|
return;
|
|
}
|
|
step = 1;
|
|
}
|
|
|
|
// compute Jacobi rotation J which leads to a zero for element [p][q]
|
|
btScalar mpq = m_el[p][q];
|
|
btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
|
|
btScalar theta2 = theta * theta;
|
|
btScalar cos;
|
|
btScalar sin;
|
|
if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
|
|
{
|
|
t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
|
|
: 1 / (theta - btSqrt(1 + theta2));
|
|
cos = 1 / btSqrt(1 + t * t);
|
|
sin = cos * t;
|
|
}
|
|
else
|
|
{
|
|
// approximation for large theta-value, i.e., a nearly diagonal matrix
|
|
t = 1 / (theta * (2 + btScalar(0.5) / theta2));
|
|
cos = 1 - btScalar(0.5) * t * t;
|
|
sin = cos * t;
|
|
}
|
|
|
|
// apply rotation to matrix (this = J^T * this * J)
|
|
m_el[p][q] = m_el[q][p] = 0;
|
|
m_el[p][p] -= t * mpq;
|
|
m_el[q][q] += t * mpq;
|
|
btScalar mrp = m_el[r][p];
|
|
btScalar mrq = m_el[r][q];
|
|
m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
|
|
m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
|
|
|
|
// apply rotation to rot (rot = rot * J)
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
btVector3& row = rot[i];
|
|
mrp = row[p];
|
|
mrq = row[q];
|
|
row[p] = cos * mrp - sin * mrq;
|
|
row[q] = cos * mrq + sin * mrp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**@brief Calculate the matrix cofactor
|
|
* @param r1 The first row to use for calculating the cofactor
|
|
* @param c1 The first column to use for calculating the cofactor
|
|
* @param r1 The second row to use for calculating the cofactor
|
|
* @param c1 The second column to use for calculating the cofactor
|
|
* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
|
|
*/
|
|
btScalar cofac(int r1, int c1, int r2, int c2) const
|
|
{
|
|
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
|
|
}
|
|
|
|
void serialize(struct btMatrix3x3Data & dataOut) const;
|
|
|
|
void serializeFloat(struct btMatrix3x3FloatData & dataOut) const;
|
|
|
|
void deSerialize(const struct btMatrix3x3Data& dataIn);
|
|
|
|
void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
|
|
|
|
void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
|
|
};
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3&
|
|
btMatrix3x3::operator*=(const btMatrix3x3& m)
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
|
|
__m128 rv00, rv01, rv02;
|
|
__m128 rv10, rv11, rv12;
|
|
__m128 rv20, rv21, rv22;
|
|
__m128 mv0, mv1, mv2;
|
|
|
|
rv02 = m_el[0].mVec128;
|
|
rv12 = m_el[1].mVec128;
|
|
rv22 = m_el[2].mVec128;
|
|
|
|
mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
|
|
mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
|
|
mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
|
|
|
|
// rv0
|
|
rv00 = bt_splat_ps(rv02, 0);
|
|
rv01 = bt_splat_ps(rv02, 1);
|
|
rv02 = bt_splat_ps(rv02, 2);
|
|
|
|
rv00 = _mm_mul_ps(rv00, mv0);
|
|
rv01 = _mm_mul_ps(rv01, mv1);
|
|
rv02 = _mm_mul_ps(rv02, mv2);
|
|
|
|
// rv1
|
|
rv10 = bt_splat_ps(rv12, 0);
|
|
rv11 = bt_splat_ps(rv12, 1);
|
|
rv12 = bt_splat_ps(rv12, 2);
|
|
|
|
rv10 = _mm_mul_ps(rv10, mv0);
|
|
rv11 = _mm_mul_ps(rv11, mv1);
|
|
rv12 = _mm_mul_ps(rv12, mv2);
|
|
|
|
// rv2
|
|
rv20 = bt_splat_ps(rv22, 0);
|
|
rv21 = bt_splat_ps(rv22, 1);
|
|
rv22 = bt_splat_ps(rv22, 2);
|
|
|
|
rv20 = _mm_mul_ps(rv20, mv0);
|
|
rv21 = _mm_mul_ps(rv21, mv1);
|
|
rv22 = _mm_mul_ps(rv22, mv2);
|
|
|
|
rv00 = _mm_add_ps(rv00, rv01);
|
|
rv10 = _mm_add_ps(rv10, rv11);
|
|
rv20 = _mm_add_ps(rv20, rv21);
|
|
|
|
m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
|
|
m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
|
|
m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
|
|
|
|
#elif defined(BT_USE_NEON)
|
|
|
|
float32x4_t rv0, rv1, rv2;
|
|
float32x4_t v0, v1, v2;
|
|
float32x4_t mv0, mv1, mv2;
|
|
|
|
v0 = m_el[0].mVec128;
|
|
v1 = m_el[1].mVec128;
|
|
v2 = m_el[2].mVec128;
|
|
|
|
mv0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
|
|
mv1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
|
|
mv2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
|
|
|
|
rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
|
|
rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
|
|
rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
|
|
|
|
rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
|
|
rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
|
|
rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
|
|
|
|
rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
|
|
rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
|
|
rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
|
|
|
|
m_el[0].mVec128 = rv0;
|
|
m_el[1].mVec128 = rv1;
|
|
m_el[2].mVec128 = rv2;
|
|
#else
|
|
setValue(
|
|
m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
|
|
m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
|
|
m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3&
|
|
btMatrix3x3::operator+=(const btMatrix3x3& m)
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
|
|
m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
|
|
m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
|
|
#else
|
|
setValue(
|
|
m_el[0][0] + m.m_el[0][0],
|
|
m_el[0][1] + m.m_el[0][1],
|
|
m_el[0][2] + m.m_el[0][2],
|
|
m_el[1][0] + m.m_el[1][0],
|
|
m_el[1][1] + m.m_el[1][1],
|
|
m_el[1][2] + m.m_el[1][2],
|
|
m_el[2][0] + m.m_el[2][0],
|
|
m_el[2][1] + m.m_el[2][1],
|
|
m_el[2][2] + m.m_el[2][2]);
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
operator*(const btMatrix3x3& m, const btScalar& k)
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
__m128 vk = bt_splat_ps(_mm_load_ss((float*)&k), 0x80);
|
|
return btMatrix3x3(
|
|
_mm_mul_ps(m[0].mVec128, vk),
|
|
_mm_mul_ps(m[1].mVec128, vk),
|
|
_mm_mul_ps(m[2].mVec128, vk));
|
|
#elif defined(BT_USE_NEON)
|
|
return btMatrix3x3(
|
|
vmulq_n_f32(m[0].mVec128, k),
|
|
vmulq_n_f32(m[1].mVec128, k),
|
|
vmulq_n_f32(m[2].mVec128, k));
|
|
#else
|
|
return btMatrix3x3(
|
|
m[0].x() * k, m[0].y() * k, m[0].z() * k,
|
|
m[1].x() * k, m[1].y() * k, m[1].z() * k,
|
|
m[2].x() * k, m[2].y() * k, m[2].z() * k);
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
return btMatrix3x3(
|
|
m1[0].mVec128 + m2[0].mVec128,
|
|
m1[1].mVec128 + m2[1].mVec128,
|
|
m1[2].mVec128 + m2[2].mVec128);
|
|
#else
|
|
return btMatrix3x3(
|
|
m1[0][0] + m2[0][0],
|
|
m1[0][1] + m2[0][1],
|
|
m1[0][2] + m2[0][2],
|
|
|
|
m1[1][0] + m2[1][0],
|
|
m1[1][1] + m2[1][1],
|
|
m1[1][2] + m2[1][2],
|
|
|
|
m1[2][0] + m2[2][0],
|
|
m1[2][1] + m2[2][1],
|
|
m1[2][2] + m2[2][2]);
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
return btMatrix3x3(
|
|
m1[0].mVec128 - m2[0].mVec128,
|
|
m1[1].mVec128 - m2[1].mVec128,
|
|
m1[2].mVec128 - m2[2].mVec128);
|
|
#else
|
|
return btMatrix3x3(
|
|
m1[0][0] - m2[0][0],
|
|
m1[0][1] - m2[0][1],
|
|
m1[0][2] - m2[0][2],
|
|
|
|
m1[1][0] - m2[1][0],
|
|
m1[1][1] - m2[1][1],
|
|
m1[1][2] - m2[1][2],
|
|
|
|
m1[2][0] - m2[2][0],
|
|
m1[2][1] - m2[2][1],
|
|
m1[2][2] - m2[2][2]);
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3&
|
|
btMatrix3x3::operator-=(const btMatrix3x3& m)
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
|
|
m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
|
|
m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
|
|
#else
|
|
setValue(
|
|
m_el[0][0] - m.m_el[0][0],
|
|
m_el[0][1] - m.m_el[0][1],
|
|
m_el[0][2] - m.m_el[0][2],
|
|
m_el[1][0] - m.m_el[1][0],
|
|
m_el[1][1] - m.m_el[1][1],
|
|
m_el[1][2] - m.m_el[1][2],
|
|
m_el[2][0] - m.m_el[2][0],
|
|
m_el[2][1] - m.m_el[2][1],
|
|
m_el[2][2] - m.m_el[2][2]);
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar
|
|
btMatrix3x3::determinant() const
|
|
{
|
|
return btTriple((*this)[0], (*this)[1], (*this)[2]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::absolute() const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
return btMatrix3x3(
|
|
_mm_and_ps(m_el[0].mVec128, btvAbsfMask),
|
|
_mm_and_ps(m_el[1].mVec128, btvAbsfMask),
|
|
_mm_and_ps(m_el[2].mVec128, btvAbsfMask));
|
|
#elif defined(BT_USE_NEON)
|
|
return btMatrix3x3(
|
|
(float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
|
|
(float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
|
|
(float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
|
|
#else
|
|
return btMatrix3x3(
|
|
btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
|
|
btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
|
|
btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::transpose() const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
__m128 v0 = m_el[0].mVec128;
|
|
__m128 v1 = m_el[1].mVec128;
|
|
__m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
|
|
__m128 vT;
|
|
|
|
v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
|
|
|
|
vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
|
|
v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
|
|
|
|
v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
|
|
v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
|
|
v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
|
|
|
|
return btMatrix3x3(v0, v1, v2);
|
|
#elif defined(BT_USE_NEON)
|
|
// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
|
|
static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
|
|
float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
|
|
float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
|
|
float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
|
|
float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
|
|
float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
|
|
float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
|
|
return btMatrix3x3(v0, v1, v2);
|
|
#else
|
|
return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
|
|
m_el[0].y(), m_el[1].y(), m_el[2].y(),
|
|
m_el[0].z(), m_el[1].z(), m_el[2].z());
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::adjoint() const
|
|
{
|
|
return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
|
|
cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
|
|
cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::inverse() const
|
|
{
|
|
btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
|
|
btScalar det = (*this)[0].dot(co);
|
|
//btFullAssert(det != btScalar(0.0));
|
|
btAssert(det != btScalar(0.0));
|
|
btScalar s = btScalar(1.0) / det;
|
|
return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
|
|
co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
|
|
co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
// zeros w
|
|
// static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
|
|
__m128 row = m_el[0].mVec128;
|
|
__m128 m0 = _mm_and_ps(m.getRow(0).mVec128, btvFFF0fMask);
|
|
__m128 m1 = _mm_and_ps(m.getRow(1).mVec128, btvFFF0fMask);
|
|
__m128 m2 = _mm_and_ps(m.getRow(2).mVec128, btvFFF0fMask);
|
|
__m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
|
|
__m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
|
|
__m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
|
|
row = m_el[1].mVec128;
|
|
r0 = _mm_add_ps(r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
|
|
r1 = _mm_add_ps(r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
|
|
r2 = _mm_add_ps(r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
|
|
row = m_el[2].mVec128;
|
|
r0 = _mm_add_ps(r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
|
|
r1 = _mm_add_ps(r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
|
|
r2 = _mm_add_ps(r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
|
|
return btMatrix3x3(r0, r1, r2);
|
|
|
|
#elif defined BT_USE_NEON
|
|
// zeros w
|
|
static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0};
|
|
float32x4_t m0 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(0).mVec128, xyzMask);
|
|
float32x4_t m1 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(1).mVec128, xyzMask);
|
|
float32x4_t m2 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(2).mVec128, xyzMask);
|
|
float32x4_t row = m_el[0].mVec128;
|
|
float32x4_t r0 = vmulq_lane_f32(m0, vget_low_f32(row), 0);
|
|
float32x4_t r1 = vmulq_lane_f32(m0, vget_low_f32(row), 1);
|
|
float32x4_t r2 = vmulq_lane_f32(m0, vget_high_f32(row), 0);
|
|
row = m_el[1].mVec128;
|
|
r0 = vmlaq_lane_f32(r0, m1, vget_low_f32(row), 0);
|
|
r1 = vmlaq_lane_f32(r1, m1, vget_low_f32(row), 1);
|
|
r2 = vmlaq_lane_f32(r2, m1, vget_high_f32(row), 0);
|
|
row = m_el[2].mVec128;
|
|
r0 = vmlaq_lane_f32(r0, m2, vget_low_f32(row), 0);
|
|
r1 = vmlaq_lane_f32(r1, m2, vget_low_f32(row), 1);
|
|
r2 = vmlaq_lane_f32(r2, m2, vget_high_f32(row), 0);
|
|
return btMatrix3x3(r0, r1, r2);
|
|
#else
|
|
return btMatrix3x3(
|
|
m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
|
|
m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
|
|
m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
|
|
m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
|
|
m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
|
|
m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
|
|
m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
|
|
m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
|
|
m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
__m128 a0 = m_el[0].mVec128;
|
|
__m128 a1 = m_el[1].mVec128;
|
|
__m128 a2 = m_el[2].mVec128;
|
|
|
|
btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
|
|
__m128 mx = mT[0].mVec128;
|
|
__m128 my = mT[1].mVec128;
|
|
__m128 mz = mT[2].mVec128;
|
|
|
|
__m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
|
|
__m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
|
|
__m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
|
|
r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
|
|
r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
|
|
r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
|
|
r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
|
|
r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
|
|
r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
|
|
return btMatrix3x3(r0, r1, r2);
|
|
|
|
#elif defined BT_USE_NEON
|
|
float32x4_t a0 = m_el[0].mVec128;
|
|
float32x4_t a1 = m_el[1].mVec128;
|
|
float32x4_t a2 = m_el[2].mVec128;
|
|
|
|
btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
|
|
float32x4_t mx = mT[0].mVec128;
|
|
float32x4_t my = mT[1].mVec128;
|
|
float32x4_t mz = mT[2].mVec128;
|
|
|
|
float32x4_t r0 = vmulq_lane_f32(mx, vget_low_f32(a0), 0);
|
|
float32x4_t r1 = vmulq_lane_f32(mx, vget_low_f32(a1), 0);
|
|
float32x4_t r2 = vmulq_lane_f32(mx, vget_low_f32(a2), 0);
|
|
r0 = vmlaq_lane_f32(r0, my, vget_low_f32(a0), 1);
|
|
r1 = vmlaq_lane_f32(r1, my, vget_low_f32(a1), 1);
|
|
r2 = vmlaq_lane_f32(r2, my, vget_low_f32(a2), 1);
|
|
r0 = vmlaq_lane_f32(r0, mz, vget_high_f32(a0), 0);
|
|
r1 = vmlaq_lane_f32(r1, mz, vget_high_f32(a1), 0);
|
|
r2 = vmlaq_lane_f32(r2, mz, vget_high_f32(a2), 0);
|
|
return btMatrix3x3(r0, r1, r2);
|
|
|
|
#else
|
|
return btMatrix3x3(
|
|
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
|
|
m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
|
|
m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator*(const btMatrix3x3& m, const btVector3& v)
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
|
return v.dot3(m[0], m[1], m[2]);
|
|
#else
|
|
return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator*(const btVector3& v, const btMatrix3x3& m)
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
|
|
const __m128 vv = v.mVec128;
|
|
|
|
__m128 c0 = bt_splat_ps(vv, 0);
|
|
__m128 c1 = bt_splat_ps(vv, 1);
|
|
__m128 c2 = bt_splat_ps(vv, 2);
|
|
|
|
c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask));
|
|
c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask));
|
|
c0 = _mm_add_ps(c0, c1);
|
|
c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask));
|
|
|
|
return btVector3(_mm_add_ps(c0, c2));
|
|
#elif defined(BT_USE_NEON)
|
|
const float32x4_t vv = v.mVec128;
|
|
const float32x2_t vlo = vget_low_f32(vv);
|
|
const float32x2_t vhi = vget_high_f32(vv);
|
|
|
|
float32x4_t c0, c1, c2;
|
|
|
|
c0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
|
|
c1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
|
|
c2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
|
|
|
|
c0 = vmulq_lane_f32(c0, vlo, 0);
|
|
c1 = vmulq_lane_f32(c1, vlo, 1);
|
|
c2 = vmulq_lane_f32(c2, vhi, 0);
|
|
c0 = vaddq_f32(c0, c1);
|
|
c0 = vaddq_f32(c0, c2);
|
|
|
|
return btVector3(c0);
|
|
#else
|
|
return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
|
|
__m128 m10 = m1[0].mVec128;
|
|
__m128 m11 = m1[1].mVec128;
|
|
__m128 m12 = m1[2].mVec128;
|
|
|
|
__m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
|
|
|
|
__m128 c0 = bt_splat_ps(m10, 0);
|
|
__m128 c1 = bt_splat_ps(m11, 0);
|
|
__m128 c2 = bt_splat_ps(m12, 0);
|
|
|
|
c0 = _mm_mul_ps(c0, m2v);
|
|
c1 = _mm_mul_ps(c1, m2v);
|
|
c2 = _mm_mul_ps(c2, m2v);
|
|
|
|
m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
|
|
|
|
__m128 c0_1 = bt_splat_ps(m10, 1);
|
|
__m128 c1_1 = bt_splat_ps(m11, 1);
|
|
__m128 c2_1 = bt_splat_ps(m12, 1);
|
|
|
|
c0_1 = _mm_mul_ps(c0_1, m2v);
|
|
c1_1 = _mm_mul_ps(c1_1, m2v);
|
|
c2_1 = _mm_mul_ps(c2_1, m2v);
|
|
|
|
m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
|
|
|
|
c0 = _mm_add_ps(c0, c0_1);
|
|
c1 = _mm_add_ps(c1, c1_1);
|
|
c2 = _mm_add_ps(c2, c2_1);
|
|
|
|
m10 = bt_splat_ps(m10, 2);
|
|
m11 = bt_splat_ps(m11, 2);
|
|
m12 = bt_splat_ps(m12, 2);
|
|
|
|
m10 = _mm_mul_ps(m10, m2v);
|
|
m11 = _mm_mul_ps(m11, m2v);
|
|
m12 = _mm_mul_ps(m12, m2v);
|
|
|
|
c0 = _mm_add_ps(c0, m10);
|
|
c1 = _mm_add_ps(c1, m11);
|
|
c2 = _mm_add_ps(c2, m12);
|
|
|
|
return btMatrix3x3(c0, c1, c2);
|
|
|
|
#elif defined(BT_USE_NEON)
|
|
|
|
float32x4_t rv0, rv1, rv2;
|
|
float32x4_t v0, v1, v2;
|
|
float32x4_t mv0, mv1, mv2;
|
|
|
|
v0 = m1[0].mVec128;
|
|
v1 = m1[1].mVec128;
|
|
v2 = m1[2].mVec128;
|
|
|
|
mv0 = (float32x4_t)vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
|
|
mv1 = (float32x4_t)vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
|
|
mv2 = (float32x4_t)vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
|
|
|
|
rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
|
|
rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
|
|
rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
|
|
|
|
rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
|
|
rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
|
|
rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
|
|
|
|
rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
|
|
rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
|
|
rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
|
|
|
|
return btMatrix3x3(rv0, rv1, rv2);
|
|
|
|
#else
|
|
return btMatrix3x3(
|
|
m2.tdotx(m1[0]), m2.tdoty(m1[0]), m2.tdotz(m1[0]),
|
|
m2.tdotx(m1[1]), m2.tdoty(m1[1]), m2.tdotz(m1[1]),
|
|
m2.tdotx(m1[2]), m2.tdoty(m1[2]), m2.tdotz(m1[2]));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
|
|
return btMatrix3x3(
|
|
m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
|
|
m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
|
|
m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
|
|
m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
|
|
m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
|
|
m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
|
|
m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
|
|
m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
|
|
m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
|
|
}
|
|
*/
|
|
|
|
/**@brief Equality operator between two matrices
|
|
* It will test all elements are equal. */
|
|
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
|
{
|
|
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
|
|
__m128 c0, c1, c2;
|
|
|
|
c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
|
|
c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
|
|
c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
|
|
|
|
c0 = _mm_and_ps(c0, c1);
|
|
c0 = _mm_and_ps(c0, c2);
|
|
|
|
int m = _mm_movemask_ps((__m128)c0);
|
|
return (0x7 == (m & 0x7));
|
|
|
|
#else
|
|
return (m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
|
|
m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
|
|
m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2]);
|
|
#endif
|
|
}
|
|
|
|
///for serialization
|
|
struct btMatrix3x3FloatData
|
|
{
|
|
btVector3FloatData m_el[3];
|
|
};
|
|
|
|
///for serialization
|
|
struct btMatrix3x3DoubleData
|
|
{
|
|
btVector3DoubleData m_el[3];
|
|
};
|
|
|
|
SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
m_el[i].serialize(dataOut.m_el[i]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
m_el[i].serializeFloat(dataOut.m_el[i]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
m_el[i].deSerialize(dataIn.m_el[i]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
m_el[i].deSerializeFloat(dataIn.m_el[i]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
m_el[i].deSerializeDouble(dataIn.m_el[i]);
|
|
}
|
|
|
|
#endif //BT_MATRIX3x3_H
|