mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-22 09:07:17 +01:00
507 lines
15 KiB
C++
507 lines
15 KiB
C++
#ifndef VECTOR3_H
|
|
#define VECTOR3_H
|
|
/*************************************************************************/
|
|
/* vector3.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/string/ustring.h"
|
|
|
|
struct Basis;
|
|
|
|
struct _NO_DISCARD_CLASS_ Vector3 {
|
|
static const int AXIS_COUNT = 3;
|
|
|
|
enum Axis {
|
|
AXIS_X,
|
|
AXIS_Y,
|
|
AXIS_Z,
|
|
};
|
|
|
|
union {
|
|
struct {
|
|
real_t x;
|
|
real_t y;
|
|
real_t z;
|
|
};
|
|
|
|
real_t coord[3];
|
|
};
|
|
|
|
_FORCE_INLINE_ const real_t &operator[](int p_axis) const {
|
|
DEV_ASSERT((unsigned int)p_axis < 3);
|
|
return coord[p_axis];
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t &operator[](int p_axis) {
|
|
DEV_ASSERT((unsigned int)p_axis < 3);
|
|
return coord[p_axis];
|
|
}
|
|
|
|
void set_axis(int p_axis, real_t p_value);
|
|
real_t get_axis(int p_axis) const;
|
|
|
|
_FORCE_INLINE_ void set_all(real_t p_value) {
|
|
x = y = z = p_value;
|
|
}
|
|
|
|
_FORCE_INLINE_ int min_axis() const {
|
|
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
|
|
}
|
|
|
|
_FORCE_INLINE_ int max_axis() const {
|
|
return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t length() const;
|
|
_FORCE_INLINE_ real_t length_squared() const;
|
|
|
|
_FORCE_INLINE_ void normalize();
|
|
_FORCE_INLINE_ Vector3 normalized() const;
|
|
_FORCE_INLINE_ bool is_normalized() const;
|
|
_FORCE_INLINE_ Vector3 inverse() const;
|
|
Vector3 limit_length(const real_t p_len = 1.0) const;
|
|
|
|
_FORCE_INLINE_ void zero();
|
|
|
|
void snap(const Vector3 &p_val);
|
|
Vector3 snapped(const Vector3 &p_val) const;
|
|
|
|
void rotate(const Vector3 &p_axis, real_t p_phi);
|
|
Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
|
|
|
|
/* Static Methods between 2 vector3s */
|
|
|
|
_FORCE_INLINE_ Vector3 linear_interpolate(const Vector3 &p_to, real_t p_weight) const;
|
|
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, real_t p_weight) const;
|
|
_FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
|
|
_FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
|
|
|
|
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
|
|
|
|
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
|
|
_FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
|
|
Basis outer(const Vector3 &p_b) const;
|
|
Basis to_diagonal_matrix() const;
|
|
|
|
_FORCE_INLINE_ Vector3 abs() const;
|
|
_FORCE_INLINE_ Vector3 floor() const;
|
|
_FORCE_INLINE_ Vector3 sign() const;
|
|
_FORCE_INLINE_ Vector3 ceil() const;
|
|
_FORCE_INLINE_ Vector3 round() const;
|
|
Vector3 clamp(const Vector3 &p_min, const Vector3 &p_max) const;
|
|
|
|
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
|
|
_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;
|
|
|
|
_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
|
|
_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
|
|
_FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;
|
|
|
|
_FORCE_INLINE_ real_t angle_to(const Vector3 &p_to) const;
|
|
_FORCE_INLINE_ real_t signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const;
|
|
_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_to) const;
|
|
|
|
_FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
|
|
_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
|
|
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
|
|
|
|
bool is_equal_approx(const Vector3 &p_v) const;
|
|
inline bool is_equal_approx(const Vector3 &p_v, real_t p_tolerance) const;
|
|
inline bool is_equal_approxt(const Vector3 &p_v, real_t p_tolerance) const;
|
|
|
|
/* Operators */
|
|
|
|
_FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
|
|
_FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
|
|
_FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
|
|
_FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
|
|
_FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
|
|
|
|
_FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar);
|
|
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
|
|
_FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar);
|
|
_FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;
|
|
|
|
_FORCE_INLINE_ Vector3 operator-() const;
|
|
|
|
_FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
|
|
_FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
|
|
|
|
operator String() const;
|
|
|
|
_FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) {
|
|
x = p_x;
|
|
y = p_y;
|
|
z = p_z;
|
|
}
|
|
_FORCE_INLINE_ Vector3() { x = y = z = 0; }
|
|
};
|
|
|
|
Vector3 Vector3::cross(const Vector3 &p_b) const {
|
|
Vector3 ret(
|
|
(y * p_b.z) - (z * p_b.y),
|
|
(z * p_b.x) - (x * p_b.z),
|
|
(x * p_b.y) - (y * p_b.x));
|
|
|
|
return ret;
|
|
}
|
|
|
|
real_t Vector3::dot(const Vector3 &p_b) const {
|
|
return x * p_b.x + y * p_b.y + z * p_b.z;
|
|
}
|
|
|
|
Vector3 Vector3::abs() const {
|
|
return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
|
|
}
|
|
|
|
Vector3 Vector3::sign() const {
|
|
return Vector3(SGN(x), SGN(y), SGN(z));
|
|
}
|
|
|
|
Vector3 Vector3::floor() const {
|
|
return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
|
|
}
|
|
|
|
Vector3 Vector3::ceil() const {
|
|
return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
|
|
}
|
|
|
|
Vector3 Vector3::round() const {
|
|
return Vector3(Math::round(x), Math::round(y), Math::round(z));
|
|
}
|
|
|
|
Vector3 Vector3::linear_interpolate(const Vector3 &p_to, real_t p_weight) const {
|
|
return Vector3(
|
|
x + (p_weight * (p_to.x - x)),
|
|
y + (p_weight * (p_to.y - y)),
|
|
z + (p_weight * (p_to.z - z)));
|
|
}
|
|
|
|
Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
|
|
// This method seems more complicated than it really is, since we write out
|
|
// the internals of some methods for efficiency (mainly, checking length).
|
|
real_t start_length_sq = length_squared();
|
|
real_t end_length_sq = p_to.length_squared();
|
|
if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
|
|
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
|
|
return linear_interpolate(p_to, p_weight);
|
|
}
|
|
Vector3 axis = cross(p_to);
|
|
real_t axis_length_sq = axis.length_squared();
|
|
if (unlikely(axis_length_sq == 0.0f)) {
|
|
// Colinear vectors have no rotation axis or angle between them, so the best we can do is lerp.
|
|
return linear_interpolate(p_to, p_weight);
|
|
}
|
|
axis /= Math::sqrt(axis_length_sq);
|
|
real_t start_length = Math::sqrt(start_length_sq);
|
|
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
|
|
real_t angle = angle_to(p_to);
|
|
return rotated(axis, angle * p_weight) * (result_length / start_length);
|
|
}
|
|
|
|
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const {
|
|
Vector3 res = *this;
|
|
res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
|
|
res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
|
|
res.z = Math::cubic_interpolate(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight);
|
|
return res;
|
|
}
|
|
|
|
Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
|
|
Vector3 res = *this;
|
|
|
|
/* Formula from Wikipedia article on Bezier curves. */
|
|
real_t omt = (1.0 - p_t);
|
|
real_t omt2 = omt * omt;
|
|
real_t omt3 = omt2 * omt;
|
|
real_t t2 = p_t * p_t;
|
|
real_t t3 = t2 * p_t;
|
|
|
|
return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
|
|
}
|
|
|
|
real_t Vector3::distance_to(const Vector3 &p_to) const {
|
|
return (p_to - *this).length();
|
|
}
|
|
|
|
real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
|
|
return (p_to - *this).length_squared();
|
|
}
|
|
|
|
Vector3 Vector3::posmod(const real_t p_mod) const {
|
|
return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
|
|
}
|
|
|
|
Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
|
|
return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
|
|
}
|
|
|
|
Vector3 Vector3::project(const Vector3 &p_to) const {
|
|
return p_to * (dot(p_to) / p_to.length_squared());
|
|
}
|
|
|
|
real_t Vector3::angle_to(const Vector3 &p_to) const {
|
|
return Math::atan2(cross(p_to).length(), dot(p_to));
|
|
}
|
|
|
|
real_t Vector3::signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const {
|
|
Vector3 cross_to = cross(p_to);
|
|
real_t unsigned_angle = Math::atan2(cross_to.length(), dot(p_to));
|
|
real_t sign = cross_to.dot(p_axis);
|
|
return (sign < 0) ? -unsigned_angle : unsigned_angle;
|
|
}
|
|
|
|
Vector3 Vector3::direction_to(const Vector3 &p_to) const {
|
|
Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
|
|
ret.normalize();
|
|
return ret;
|
|
}
|
|
|
|
/* Operators */
|
|
|
|
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
z += p_v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator+(const Vector3 &p_v) const {
|
|
return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
|
|
}
|
|
|
|
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
z -= p_v.z;
|
|
return *this;
|
|
}
|
|
Vector3 Vector3::operator-(const Vector3 &p_v) const {
|
|
return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
|
|
}
|
|
|
|
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
|
|
x *= p_v.x;
|
|
y *= p_v.y;
|
|
z *= p_v.z;
|
|
return *this;
|
|
}
|
|
Vector3 Vector3::operator*(const Vector3 &p_v) const {
|
|
return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
|
|
}
|
|
|
|
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
|
|
x /= p_v.x;
|
|
y /= p_v.y;
|
|
z /= p_v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator/(const Vector3 &p_v) const {
|
|
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
|
|
}
|
|
|
|
Vector3 &Vector3::operator*=(real_t p_scalar) {
|
|
x *= p_scalar;
|
|
y *= p_scalar;
|
|
z *= p_scalar;
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
Vector3 Vector3::operator*(real_t p_scalar) const {
|
|
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
|
|
}
|
|
|
|
Vector3 &Vector3::operator/=(real_t p_scalar) {
|
|
x /= p_scalar;
|
|
y /= p_scalar;
|
|
z /= p_scalar;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator/(real_t p_scalar) const {
|
|
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
|
|
}
|
|
|
|
Vector3 Vector3::operator-() const {
|
|
return Vector3(-x, -y, -z);
|
|
}
|
|
|
|
bool Vector3::operator==(const Vector3 &p_v) const {
|
|
return x == p_v.x && y == p_v.y && z == p_v.z;
|
|
}
|
|
|
|
bool Vector3::operator!=(const Vector3 &p_v) const {
|
|
return x != p_v.x || y != p_v.y || z != p_v.z;
|
|
}
|
|
|
|
bool Vector3::operator<(const Vector3 &p_v) const {
|
|
if (x == p_v.x) {
|
|
if (y == p_v.y) {
|
|
return z < p_v.z;
|
|
} else {
|
|
return y < p_v.y;
|
|
}
|
|
} else {
|
|
return x < p_v.x;
|
|
}
|
|
}
|
|
|
|
bool Vector3::operator>(const Vector3 &p_v) const {
|
|
if (x == p_v.x) {
|
|
if (y == p_v.y) {
|
|
return z > p_v.z;
|
|
} else {
|
|
return y > p_v.y;
|
|
}
|
|
} else {
|
|
return x > p_v.x;
|
|
}
|
|
}
|
|
|
|
bool Vector3::operator<=(const Vector3 &p_v) const {
|
|
if (x == p_v.x) {
|
|
if (y == p_v.y) {
|
|
return z <= p_v.z;
|
|
} else {
|
|
return y < p_v.y;
|
|
}
|
|
} else {
|
|
return x < p_v.x;
|
|
}
|
|
}
|
|
|
|
bool Vector3::operator>=(const Vector3 &p_v) const {
|
|
if (x == p_v.x) {
|
|
if (y == p_v.y) {
|
|
return z >= p_v.z;
|
|
} else {
|
|
return y > p_v.y;
|
|
}
|
|
} else {
|
|
return x > p_v.x;
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
|
|
return p_a.cross(p_b);
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
|
|
return p_a.dot(p_b);
|
|
}
|
|
|
|
real_t Vector3::length() const {
|
|
real_t x2 = x * x;
|
|
real_t y2 = y * y;
|
|
real_t z2 = z * z;
|
|
|
|
return Math::sqrt(x2 + y2 + z2);
|
|
}
|
|
|
|
real_t Vector3::length_squared() const {
|
|
real_t x2 = x * x;
|
|
real_t y2 = y * y;
|
|
real_t z2 = z * z;
|
|
|
|
return x2 + y2 + z2;
|
|
}
|
|
|
|
void Vector3::normalize() {
|
|
real_t lengthsq = length_squared();
|
|
if (lengthsq == 0) {
|
|
x = y = z = 0;
|
|
} else {
|
|
real_t length = Math::sqrt(lengthsq);
|
|
x /= length;
|
|
y /= length;
|
|
z /= length;
|
|
}
|
|
}
|
|
|
|
Vector3 Vector3::normalized() const {
|
|
Vector3 v = *this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
bool Vector3::is_normalized() const {
|
|
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
|
|
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
|
|
}
|
|
|
|
Vector3 Vector3::inverse() const {
|
|
return Vector3(1 / x, 1 / y, 1 / z);
|
|
}
|
|
|
|
void Vector3::zero() {
|
|
x = y = z = 0;
|
|
}
|
|
|
|
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
|
Vector3 Vector3::slide(const Vector3 &p_normal) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
|
|
#endif
|
|
return *this - p_normal * this->dot(p_normal);
|
|
}
|
|
|
|
Vector3 Vector3::bounce(const Vector3 &p_normal) const {
|
|
return -reflect(p_normal);
|
|
}
|
|
|
|
Vector3 Vector3::reflect(const Vector3 &p_normal) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
|
|
#endif
|
|
return 2 * p_normal * this->dot(p_normal) - *this;
|
|
}
|
|
|
|
bool Vector3::is_equal_approx(const Vector3 &p_v, real_t p_tolerance) const {
|
|
return Math::is_equal_approx(x, p_v.x, p_tolerance) && Math::is_equal_approx(y, p_v.y, p_tolerance) && Math::is_equal_approx(z, p_v.z, p_tolerance);
|
|
}
|
|
|
|
bool Vector3::is_equal_approxt(const Vector3 &p_v, real_t p_tolerance) const {
|
|
return Math::is_equal_approx(x, p_v.x, p_tolerance) && Math::is_equal_approx(y, p_v.y, p_tolerance) && Math::is_equal_approx(z, p_v.z, p_tolerance);
|
|
}
|
|
|
|
#endif // VECTOR3_H
|