mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-27 03:19:19 +01:00
1627 lines
62 KiB
C++
1627 lines
62 KiB
C++
/* Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
|
||
All rights reserved.
|
||
|
||
|
||
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
||
|
||
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
|
||
|
||
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
|
||
|
||
3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
#ifndef _CRT_SECURE_NO_WARNINGS
|
||
#define _CRT_SECURE_NO_WARNINGS
|
||
#endif
|
||
|
||
#include "btConvexHullComputer.h"
|
||
#include "vhacdVolume.h"
|
||
#include <algorithm>
|
||
#include <float.h>
|
||
#include <math.h>
|
||
#include <queue>
|
||
#include <string.h>
|
||
|
||
#ifdef _MSC_VER
|
||
#pragma warning(disable:4458 4100)
|
||
#endif
|
||
|
||
|
||
namespace VHACD {
|
||
/********************************************************/
|
||
/* AABB-triangle overlap test code */
|
||
/* by Tomas Akenine-M<>ller */
|
||
/* Function: int32_t triBoxOverlap(float boxcenter[3], */
|
||
/* float boxhalfsize[3],float triverts[3][3]); */
|
||
/* History: */
|
||
/* 2001-03-05: released the code in its first version */
|
||
/* 2001-06-18: changed the order of the tests, faster */
|
||
/* */
|
||
/* Acknowledgement: Many thanks to Pierre Terdiman for */
|
||
/* suggestions and discussions on how to optimize code. */
|
||
/* Thanks to David Hunt for finding a ">="-bug! */
|
||
/********************************************************/
|
||
|
||
#define X 0
|
||
#define Y 1
|
||
#define Z 2
|
||
#define FINDMINMAX(x0, x1, x2, min, max) \
|
||
min = max = x0; \
|
||
if (x1 < min) \
|
||
min = x1; \
|
||
if (x1 > max) \
|
||
max = x1; \
|
||
if (x2 < min) \
|
||
min = x2; \
|
||
if (x2 > max) \
|
||
max = x2;
|
||
|
||
#define AXISTEST_X01(a, b, fa, fb) \
|
||
p0 = a * v0[Y] - b * v0[Z]; \
|
||
p2 = a * v2[Y] - b * v2[Z]; \
|
||
if (p0 < p2) { \
|
||
min = p0; \
|
||
max = p2; \
|
||
} \
|
||
else { \
|
||
min = p2; \
|
||
max = p0; \
|
||
} \
|
||
rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; \
|
||
if (min > rad || max < -rad) \
|
||
return 0;
|
||
|
||
#define AXISTEST_X2(a, b, fa, fb) \
|
||
p0 = a * v0[Y] - b * v0[Z]; \
|
||
p1 = a * v1[Y] - b * v1[Z]; \
|
||
if (p0 < p1) { \
|
||
min = p0; \
|
||
max = p1; \
|
||
} \
|
||
else { \
|
||
min = p1; \
|
||
max = p0; \
|
||
} \
|
||
rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; \
|
||
if (min > rad || max < -rad) \
|
||
return 0;
|
||
|
||
#define AXISTEST_Y02(a, b, fa, fb) \
|
||
p0 = -a * v0[X] + b * v0[Z]; \
|
||
p2 = -a * v2[X] + b * v2[Z]; \
|
||
if (p0 < p2) { \
|
||
min = p0; \
|
||
max = p2; \
|
||
} \
|
||
else { \
|
||
min = p2; \
|
||
max = p0; \
|
||
} \
|
||
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; \
|
||
if (min > rad || max < -rad) \
|
||
return 0;
|
||
|
||
#define AXISTEST_Y1(a, b, fa, fb) \
|
||
p0 = -a * v0[X] + b * v0[Z]; \
|
||
p1 = -a * v1[X] + b * v1[Z]; \
|
||
if (p0 < p1) { \
|
||
min = p0; \
|
||
max = p1; \
|
||
} \
|
||
else { \
|
||
min = p1; \
|
||
max = p0; \
|
||
} \
|
||
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; \
|
||
if (min > rad || max < -rad) \
|
||
return 0;
|
||
|
||
#define AXISTEST_Z12(a, b, fa, fb) \
|
||
p1 = a * v1[X] - b * v1[Y]; \
|
||
p2 = a * v2[X] - b * v2[Y]; \
|
||
if (p2 < p1) { \
|
||
min = p2; \
|
||
max = p1; \
|
||
} \
|
||
else { \
|
||
min = p1; \
|
||
max = p2; \
|
||
} \
|
||
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; \
|
||
if (min > rad || max < -rad) \
|
||
return 0;
|
||
|
||
#define AXISTEST_Z0(a, b, fa, fb) \
|
||
p0 = a * v0[X] - b * v0[Y]; \
|
||
p1 = a * v1[X] - b * v1[Y]; \
|
||
if (p0 < p1) { \
|
||
min = p0; \
|
||
max = p1; \
|
||
} \
|
||
else { \
|
||
min = p1; \
|
||
max = p0; \
|
||
} \
|
||
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; \
|
||
if (min > rad || max < -rad) \
|
||
return 0;
|
||
|
||
int32_t PlaneBoxOverlap(const Vec3<double>& normal,
|
||
const Vec3<double>& vert,
|
||
const Vec3<double>& maxbox)
|
||
{
|
||
int32_t q;
|
||
Vec3<double> vmin, vmax;
|
||
double v;
|
||
for (q = X; q <= Z; q++) {
|
||
v = vert[q];
|
||
if (normal[q] > 0.0) {
|
||
vmin[q] = -maxbox[q] - v;
|
||
vmax[q] = maxbox[q] - v;
|
||
}
|
||
else {
|
||
vmin[q] = maxbox[q] - v;
|
||
vmax[q] = -maxbox[q] - v;
|
||
}
|
||
}
|
||
if (normal * vmin > 0.0)
|
||
return 0;
|
||
if (normal * vmax >= 0.0)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
int32_t TriBoxOverlap(const Vec3<double>& boxcenter,
|
||
const Vec3<double>& boxhalfsize,
|
||
const Vec3<double>& triver0,
|
||
const Vec3<double>& triver1,
|
||
const Vec3<double>& triver2)
|
||
{
|
||
/* use separating axis theorem to test overlap between triangle and box */
|
||
/* need to test for overlap in these directions: */
|
||
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
|
||
/* we do not even need to test these) */
|
||
/* 2) normal of the triangle */
|
||
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
|
||
/* this gives 3x3=9 more tests */
|
||
|
||
Vec3<double> v0, v1, v2;
|
||
double min, max, p0, p1, p2, rad, fex, fey, fez; // -NJMP- "d" local variable removed
|
||
Vec3<double> normal, e0, e1, e2;
|
||
|
||
/* This is the fastest branch on Sun */
|
||
/* move everything so that the boxcenter is in (0,0,0) */
|
||
|
||
v0 = triver0 - boxcenter;
|
||
v1 = triver1 - boxcenter;
|
||
v2 = triver2 - boxcenter;
|
||
|
||
/* compute triangle edges */
|
||
e0 = v1 - v0; /* tri edge 0 */
|
||
e1 = v2 - v1; /* tri edge 1 */
|
||
e2 = v0 - v2; /* tri edge 2 */
|
||
|
||
/* Bullet 3: */
|
||
/* test the 9 tests first (this was faster) */
|
||
fex = fabs(e0[X]);
|
||
fey = fabs(e0[Y]);
|
||
fez = fabs(e0[Z]);
|
||
|
||
AXISTEST_X01(e0[Z], e0[Y], fez, fey);
|
||
AXISTEST_Y02(e0[Z], e0[X], fez, fex);
|
||
AXISTEST_Z12(e0[Y], e0[X], fey, fex);
|
||
|
||
fex = fabs(e1[X]);
|
||
fey = fabs(e1[Y]);
|
||
fez = fabs(e1[Z]);
|
||
|
||
AXISTEST_X01(e1[Z], e1[Y], fez, fey);
|
||
AXISTEST_Y02(e1[Z], e1[X], fez, fex);
|
||
AXISTEST_Z0(e1[Y], e1[X], fey, fex);
|
||
|
||
fex = fabs(e2[X]);
|
||
fey = fabs(e2[Y]);
|
||
fez = fabs(e2[Z]);
|
||
|
||
AXISTEST_X2(e2[Z], e2[Y], fez, fey);
|
||
AXISTEST_Y1(e2[Z], e2[X], fez, fex);
|
||
AXISTEST_Z12(e2[Y], e2[X], fey, fex);
|
||
|
||
/* Bullet 1: */
|
||
/* first test overlap in the {x,y,z}-directions */
|
||
/* find min, max of the triangle each direction, and test for overlap in */
|
||
/* that direction -- this is equivalent to testing a minimal AABB around */
|
||
/* the triangle against the AABB */
|
||
|
||
/* test in X-direction */
|
||
FINDMINMAX(v0[X], v1[X], v2[X], min, max);
|
||
if (min > boxhalfsize[X] || max < -boxhalfsize[X])
|
||
return 0;
|
||
|
||
/* test in Y-direction */
|
||
FINDMINMAX(v0[Y], v1[Y], v2[Y], min, max);
|
||
if (min > boxhalfsize[Y] || max < -boxhalfsize[Y])
|
||
return 0;
|
||
|
||
/* test in Z-direction */
|
||
FINDMINMAX(v0[Z], v1[Z], v2[Z], min, max);
|
||
if (min > boxhalfsize[Z] || max < -boxhalfsize[Z])
|
||
return 0;
|
||
|
||
/* Bullet 2: */
|
||
/* test if the box intersects the plane of the triangle */
|
||
/* compute plane equation of triangle: normal*x+d=0 */
|
||
normal = e0 ^ e1;
|
||
|
||
if (!PlaneBoxOverlap(normal, v0, boxhalfsize))
|
||
return 0;
|
||
return 1; /* box and triangle overlaps */
|
||
}
|
||
|
||
// Slightly modified version of Stan Melax's code for 3x3 matrix diagonalization (Thanks Stan!)
|
||
// source: http://www.melax.com/diag.html?attredirects=0
|
||
void Diagonalize(const double (&A)[3][3], double (&Q)[3][3], double (&D)[3][3])
|
||
{
|
||
// A must be a symmetric matrix.
|
||
// returns Q and D such that
|
||
// Diagonal matrix D = QT * A * Q; and A = Q*D*QT
|
||
const int32_t maxsteps = 24; // certainly wont need that many.
|
||
int32_t k0, k1, k2;
|
||
double o[3], m[3];
|
||
double q[4] = { 0.0, 0.0, 0.0, 1.0 };
|
||
double jr[4];
|
||
double sqw, sqx, sqy, sqz;
|
||
double tmp1, tmp2, mq;
|
||
double AQ[3][3];
|
||
double thet, sgn, t, c;
|
||
for (int32_t i = 0; i < maxsteps; ++i) {
|
||
// quat to matrix
|
||
sqx = q[0] * q[0];
|
||
sqy = q[1] * q[1];
|
||
sqz = q[2] * q[2];
|
||
sqw = q[3] * q[3];
|
||
Q[0][0] = (sqx - sqy - sqz + sqw);
|
||
Q[1][1] = (-sqx + sqy - sqz + sqw);
|
||
Q[2][2] = (-sqx - sqy + sqz + sqw);
|
||
tmp1 = q[0] * q[1];
|
||
tmp2 = q[2] * q[3];
|
||
Q[1][0] = 2.0 * (tmp1 + tmp2);
|
||
Q[0][1] = 2.0 * (tmp1 - tmp2);
|
||
tmp1 = q[0] * q[2];
|
||
tmp2 = q[1] * q[3];
|
||
Q[2][0] = 2.0 * (tmp1 - tmp2);
|
||
Q[0][2] = 2.0 * (tmp1 + tmp2);
|
||
tmp1 = q[1] * q[2];
|
||
tmp2 = q[0] * q[3];
|
||
Q[2][1] = 2.0 * (tmp1 + tmp2);
|
||
Q[1][2] = 2.0 * (tmp1 - tmp2);
|
||
|
||
// AQ = A * Q
|
||
AQ[0][0] = Q[0][0] * A[0][0] + Q[1][0] * A[0][1] + Q[2][0] * A[0][2];
|
||
AQ[0][1] = Q[0][1] * A[0][0] + Q[1][1] * A[0][1] + Q[2][1] * A[0][2];
|
||
AQ[0][2] = Q[0][2] * A[0][0] + Q[1][2] * A[0][1] + Q[2][2] * A[0][2];
|
||
AQ[1][0] = Q[0][0] * A[0][1] + Q[1][0] * A[1][1] + Q[2][0] * A[1][2];
|
||
AQ[1][1] = Q[0][1] * A[0][1] + Q[1][1] * A[1][1] + Q[2][1] * A[1][2];
|
||
AQ[1][2] = Q[0][2] * A[0][1] + Q[1][2] * A[1][1] + Q[2][2] * A[1][2];
|
||
AQ[2][0] = Q[0][0] * A[0][2] + Q[1][0] * A[1][2] + Q[2][0] * A[2][2];
|
||
AQ[2][1] = Q[0][1] * A[0][2] + Q[1][1] * A[1][2] + Q[2][1] * A[2][2];
|
||
AQ[2][2] = Q[0][2] * A[0][2] + Q[1][2] * A[1][2] + Q[2][2] * A[2][2];
|
||
// D = Qt * AQ
|
||
D[0][0] = AQ[0][0] * Q[0][0] + AQ[1][0] * Q[1][0] + AQ[2][0] * Q[2][0];
|
||
D[0][1] = AQ[0][0] * Q[0][1] + AQ[1][0] * Q[1][1] + AQ[2][0] * Q[2][1];
|
||
D[0][2] = AQ[0][0] * Q[0][2] + AQ[1][0] * Q[1][2] + AQ[2][0] * Q[2][2];
|
||
D[1][0] = AQ[0][1] * Q[0][0] + AQ[1][1] * Q[1][0] + AQ[2][1] * Q[2][0];
|
||
D[1][1] = AQ[0][1] * Q[0][1] + AQ[1][1] * Q[1][1] + AQ[2][1] * Q[2][1];
|
||
D[1][2] = AQ[0][1] * Q[0][2] + AQ[1][1] * Q[1][2] + AQ[2][1] * Q[2][2];
|
||
D[2][0] = AQ[0][2] * Q[0][0] + AQ[1][2] * Q[1][0] + AQ[2][2] * Q[2][0];
|
||
D[2][1] = AQ[0][2] * Q[0][1] + AQ[1][2] * Q[1][1] + AQ[2][2] * Q[2][1];
|
||
D[2][2] = AQ[0][2] * Q[0][2] + AQ[1][2] * Q[1][2] + AQ[2][2] * Q[2][2];
|
||
o[0] = D[1][2];
|
||
o[1] = D[0][2];
|
||
o[2] = D[0][1];
|
||
m[0] = fabs(o[0]);
|
||
m[1] = fabs(o[1]);
|
||
m[2] = fabs(o[2]);
|
||
|
||
k0 = (m[0] > m[1] && m[0] > m[2]) ? 0 : (m[1] > m[2]) ? 1 : 2; // index of largest element of offdiag
|
||
k1 = (k0 + 1) % 3;
|
||
k2 = (k0 + 2) % 3;
|
||
if (o[k0] == 0.0) {
|
||
break; // diagonal already
|
||
}
|
||
thet = (D[k2][k2] - D[k1][k1]) / (2.0 * o[k0]);
|
||
sgn = (thet > 0.0) ? 1.0 : -1.0;
|
||
thet *= sgn; // make it positive
|
||
t = sgn / (thet + ((thet < 1.E6) ? sqrt(thet * thet + 1.0) : thet)); // sign(T)/(|T|+sqrt(T^2+1))
|
||
c = 1.0 / sqrt(t * t + 1.0); // c= 1/(t^2+1) , t=s/c
|
||
if (c == 1.0) {
|
||
break; // no room for improvement - reached machine precision.
|
||
}
|
||
jr[0] = jr[1] = jr[2] = jr[3] = 0.0;
|
||
jr[k0] = sgn * sqrt((1.0 - c) / 2.0); // using 1/2 angle identity sin(a/2) = sqrt((1-cos(a))/2)
|
||
jr[k0] *= -1.0; // since our quat-to-matrix convention was for v*M instead of M*v
|
||
jr[3] = sqrt(1.0 - jr[k0] * jr[k0]);
|
||
if (jr[3] == 1.0) {
|
||
break; // reached limits of floating point precision
|
||
}
|
||
q[0] = (q[3] * jr[0] + q[0] * jr[3] + q[1] * jr[2] - q[2] * jr[1]);
|
||
q[1] = (q[3] * jr[1] - q[0] * jr[2] + q[1] * jr[3] + q[2] * jr[0]);
|
||
q[2] = (q[3] * jr[2] + q[0] * jr[1] - q[1] * jr[0] + q[2] * jr[3]);
|
||
q[3] = (q[3] * jr[3] - q[0] * jr[0] - q[1] * jr[1] - q[2] * jr[2]);
|
||
mq = sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
|
||
q[0] /= mq;
|
||
q[1] /= mq;
|
||
q[2] /= mq;
|
||
q[3] /= mq;
|
||
}
|
||
}
|
||
const double TetrahedronSet::EPS = 0.0000000000001;
|
||
VoxelSet::VoxelSet()
|
||
{
|
||
m_minBB[0] = m_minBB[1] = m_minBB[2] = 0.0;
|
||
m_minBBVoxels[0] = m_minBBVoxels[1] = m_minBBVoxels[2] = 0;
|
||
m_maxBBVoxels[0] = m_maxBBVoxels[1] = m_maxBBVoxels[2] = 1;
|
||
m_minBBPts[0] = m_minBBPts[1] = m_minBBPts[2] = 0;
|
||
m_maxBBPts[0] = m_maxBBPts[1] = m_maxBBPts[2] = 1;
|
||
m_barycenter[0] = m_barycenter[1] = m_barycenter[2] = 0;
|
||
m_barycenterPCA[0] = m_barycenterPCA[1] = m_barycenterPCA[2] = 0.0;
|
||
m_scale = 1.0;
|
||
m_unitVolume = 1.0;
|
||
m_numVoxelsOnSurface = 0;
|
||
m_numVoxelsInsideSurface = 0;
|
||
memset(m_Q, 0, sizeof(double) * 9);
|
||
memset(m_D, 0, sizeof(double) * 9);
|
||
}
|
||
VoxelSet::~VoxelSet(void)
|
||
{
|
||
}
|
||
void VoxelSet::ComputeBB()
|
||
{
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
m_minBBVoxels[h] = m_voxels[0].m_coord[h];
|
||
m_maxBBVoxels[h] = m_voxels[0].m_coord[h];
|
||
}
|
||
Vec3<double> bary(0.0);
|
||
for (size_t p = 0; p < nVoxels; ++p) {
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
bary[h] += m_voxels[p].m_coord[h];
|
||
if (m_minBBVoxels[h] > m_voxels[p].m_coord[h])
|
||
m_minBBVoxels[h] = m_voxels[p].m_coord[h];
|
||
if (m_maxBBVoxels[h] < m_voxels[p].m_coord[h])
|
||
m_maxBBVoxels[h] = m_voxels[p].m_coord[h];
|
||
}
|
||
}
|
||
bary /= (double)nVoxels;
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
m_minBBPts[h] = m_minBBVoxels[h] * m_scale + m_minBB[h];
|
||
m_maxBBPts[h] = m_maxBBVoxels[h] * m_scale + m_minBB[h];
|
||
m_barycenter[h] = (short)(bary[h] + 0.5);
|
||
}
|
||
}
|
||
void VoxelSet::ComputeConvexHull(Mesh& meshCH, const size_t sampling) const
|
||
{
|
||
const size_t CLUSTER_SIZE = 65536;
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
|
||
SArray<Vec3<double> > cpoints;
|
||
|
||
Vec3<double>* points = new Vec3<double>[CLUSTER_SIZE];
|
||
size_t p = 0;
|
||
size_t s = 0;
|
||
short i, j, k;
|
||
while (p < nVoxels) {
|
||
size_t q = 0;
|
||
while (q < CLUSTER_SIZE && p < nVoxels) {
|
||
if (m_voxels[p].m_data == PRIMITIVE_ON_SURFACE) {
|
||
++s;
|
||
if (s == sampling) {
|
||
s = 0;
|
||
i = m_voxels[p].m_coord[0];
|
||
j = m_voxels[p].m_coord[1];
|
||
k = m_voxels[p].m_coord[2];
|
||
Vec3<double> p0((i - 0.5) * m_scale, (j - 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p1((i + 0.5) * m_scale, (j - 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p2((i + 0.5) * m_scale, (j + 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p3((i - 0.5) * m_scale, (j + 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p4((i - 0.5) * m_scale, (j - 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
Vec3<double> p5((i + 0.5) * m_scale, (j - 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
Vec3<double> p6((i + 0.5) * m_scale, (j + 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
Vec3<double> p7((i - 0.5) * m_scale, (j + 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
points[q++] = p0 + m_minBB;
|
||
points[q++] = p1 + m_minBB;
|
||
points[q++] = p2 + m_minBB;
|
||
points[q++] = p3 + m_minBB;
|
||
points[q++] = p4 + m_minBB;
|
||
points[q++] = p5 + m_minBB;
|
||
points[q++] = p6 + m_minBB;
|
||
points[q++] = p7 + m_minBB;
|
||
}
|
||
}
|
||
++p;
|
||
}
|
||
btConvexHullComputer ch;
|
||
ch.compute((double*)points, 3 * sizeof(double), (int32_t)q, -1.0, -1.0);
|
||
for (int32_t v = 0; v < ch.vertices.size(); v++) {
|
||
cpoints.PushBack(Vec3<double>(ch.vertices[v].getX(), ch.vertices[v].getY(), ch.vertices[v].getZ()));
|
||
}
|
||
}
|
||
delete[] points;
|
||
|
||
points = cpoints.Data();
|
||
btConvexHullComputer ch;
|
||
ch.compute((double*)points, 3 * sizeof(double), (int32_t)cpoints.Size(), -1.0, -1.0);
|
||
meshCH.ResizePoints(0);
|
||
meshCH.ResizeTriangles(0);
|
||
for (int32_t v = 0; v < ch.vertices.size(); v++) {
|
||
meshCH.AddPoint(Vec3<double>(ch.vertices[v].getX(), ch.vertices[v].getY(), ch.vertices[v].getZ()));
|
||
}
|
||
const int32_t nt = ch.faces.size();
|
||
for (int32_t t = 0; t < nt; ++t) {
|
||
const btConvexHullComputer::Edge* sourceEdge = &(ch.edges[ch.faces[t]]);
|
||
int32_t a = sourceEdge->getSourceVertex();
|
||
int32_t b = sourceEdge->getTargetVertex();
|
||
const btConvexHullComputer::Edge* edge = sourceEdge->getNextEdgeOfFace();
|
||
int32_t c = edge->getTargetVertex();
|
||
while (c != a) {
|
||
meshCH.AddTriangle(Vec3<int32_t>(a, b, c));
|
||
edge = edge->getNextEdgeOfFace();
|
||
b = c;
|
||
c = edge->getTargetVertex();
|
||
}
|
||
}
|
||
}
|
||
void VoxelSet::GetPoints(const Voxel& voxel,
|
||
Vec3<double>* const pts) const
|
||
{
|
||
short i = voxel.m_coord[0];
|
||
short j = voxel.m_coord[1];
|
||
short k = voxel.m_coord[2];
|
||
pts[0][0] = (i - 0.5) * m_scale + m_minBB[0];
|
||
pts[1][0] = (i + 0.5) * m_scale + m_minBB[0];
|
||
pts[2][0] = (i + 0.5) * m_scale + m_minBB[0];
|
||
pts[3][0] = (i - 0.5) * m_scale + m_minBB[0];
|
||
pts[4][0] = (i - 0.5) * m_scale + m_minBB[0];
|
||
pts[5][0] = (i + 0.5) * m_scale + m_minBB[0];
|
||
pts[6][0] = (i + 0.5) * m_scale + m_minBB[0];
|
||
pts[7][0] = (i - 0.5) * m_scale + m_minBB[0];
|
||
pts[0][1] = (j - 0.5) * m_scale + m_minBB[1];
|
||
pts[1][1] = (j - 0.5) * m_scale + m_minBB[1];
|
||
pts[2][1] = (j + 0.5) * m_scale + m_minBB[1];
|
||
pts[3][1] = (j + 0.5) * m_scale + m_minBB[1];
|
||
pts[4][1] = (j - 0.5) * m_scale + m_minBB[1];
|
||
pts[5][1] = (j - 0.5) * m_scale + m_minBB[1];
|
||
pts[6][1] = (j + 0.5) * m_scale + m_minBB[1];
|
||
pts[7][1] = (j + 0.5) * m_scale + m_minBB[1];
|
||
pts[0][2] = (k - 0.5) * m_scale + m_minBB[2];
|
||
pts[1][2] = (k - 0.5) * m_scale + m_minBB[2];
|
||
pts[2][2] = (k - 0.5) * m_scale + m_minBB[2];
|
||
pts[3][2] = (k - 0.5) * m_scale + m_minBB[2];
|
||
pts[4][2] = (k + 0.5) * m_scale + m_minBB[2];
|
||
pts[5][2] = (k + 0.5) * m_scale + m_minBB[2];
|
||
pts[6][2] = (k + 0.5) * m_scale + m_minBB[2];
|
||
pts[7][2] = (k + 0.5) * m_scale + m_minBB[2];
|
||
}
|
||
void VoxelSet::Intersect(const Plane& plane,
|
||
SArray<Vec3<double> >* const positivePts,
|
||
SArray<Vec3<double> >* const negativePts,
|
||
const size_t sampling) const
|
||
{
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
const double d0 = m_scale;
|
||
double d;
|
||
Vec3<double> pts[8];
|
||
Vec3<double> pt;
|
||
Voxel voxel;
|
||
size_t sp = 0;
|
||
size_t sn = 0;
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
voxel = m_voxels[v];
|
||
pt = GetPoint(voxel);
|
||
d = plane.m_a * pt[0] + plane.m_b * pt[1] + plane.m_c * pt[2] + plane.m_d;
|
||
// if (d >= 0.0 && d <= d0) positivePts->PushBack(pt);
|
||
// else if (d < 0.0 && -d <= d0) negativePts->PushBack(pt);
|
||
if (d >= 0.0) {
|
||
if (d <= d0) {
|
||
GetPoints(voxel, pts);
|
||
for (int32_t k = 0; k < 8; ++k) {
|
||
positivePts->PushBack(pts[k]);
|
||
}
|
||
}
|
||
else {
|
||
if (++sp == sampling) {
|
||
// positivePts->PushBack(pt);
|
||
GetPoints(voxel, pts);
|
||
for (int32_t k = 0; k < 8; ++k) {
|
||
positivePts->PushBack(pts[k]);
|
||
}
|
||
sp = 0;
|
||
}
|
||
}
|
||
}
|
||
else {
|
||
if (-d <= d0) {
|
||
GetPoints(voxel, pts);
|
||
for (int32_t k = 0; k < 8; ++k) {
|
||
negativePts->PushBack(pts[k]);
|
||
}
|
||
}
|
||
else {
|
||
if (++sn == sampling) {
|
||
// negativePts->PushBack(pt);
|
||
GetPoints(voxel, pts);
|
||
for (int32_t k = 0; k < 8; ++k) {
|
||
negativePts->PushBack(pts[k]);
|
||
}
|
||
sn = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
void VoxelSet::ComputeExteriorPoints(const Plane& plane,
|
||
const Mesh& mesh,
|
||
SArray<Vec3<double> >* const exteriorPts) const
|
||
{
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
double d;
|
||
Vec3<double> pt;
|
||
Vec3<double> pts[8];
|
||
Voxel voxel;
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
voxel = m_voxels[v];
|
||
pt = GetPoint(voxel);
|
||
d = plane.m_a * pt[0] + plane.m_b * pt[1] + plane.m_c * pt[2] + plane.m_d;
|
||
if (d >= 0.0) {
|
||
if (!mesh.IsInside(pt)) {
|
||
GetPoints(voxel, pts);
|
||
for (int32_t k = 0; k < 8; ++k) {
|
||
exteriorPts->PushBack(pts[k]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
void VoxelSet::ComputeClippedVolumes(const Plane& plane,
|
||
double& positiveVolume,
|
||
double& negativeVolume) const
|
||
{
|
||
negativeVolume = 0.0;
|
||
positiveVolume = 0.0;
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
double d;
|
||
Vec3<double> pt;
|
||
size_t nPositiveVoxels = 0;
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
pt = GetPoint(m_voxels[v]);
|
||
d = plane.m_a * pt[0] + plane.m_b * pt[1] + plane.m_c * pt[2] + plane.m_d;
|
||
nPositiveVoxels += (d >= 0.0);
|
||
}
|
||
size_t nNegativeVoxels = nVoxels - nPositiveVoxels;
|
||
positiveVolume = m_unitVolume * nPositiveVoxels;
|
||
negativeVolume = m_unitVolume * nNegativeVoxels;
|
||
}
|
||
void VoxelSet::SelectOnSurface(PrimitiveSet* const onSurfP) const
|
||
{
|
||
VoxelSet* const onSurf = (VoxelSet*)onSurfP;
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
onSurf->m_minBB[h] = m_minBB[h];
|
||
}
|
||
onSurf->m_voxels.Resize(0);
|
||
onSurf->m_scale = m_scale;
|
||
onSurf->m_unitVolume = m_unitVolume;
|
||
onSurf->m_numVoxelsOnSurface = 0;
|
||
onSurf->m_numVoxelsInsideSurface = 0;
|
||
Voxel voxel;
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
voxel = m_voxels[v];
|
||
if (voxel.m_data == PRIMITIVE_ON_SURFACE) {
|
||
onSurf->m_voxels.PushBack(voxel);
|
||
++onSurf->m_numVoxelsOnSurface;
|
||
}
|
||
}
|
||
}
|
||
void VoxelSet::Clip(const Plane& plane,
|
||
PrimitiveSet* const positivePartP,
|
||
PrimitiveSet* const negativePartP) const
|
||
{
|
||
VoxelSet* const positivePart = (VoxelSet*)positivePartP;
|
||
VoxelSet* const negativePart = (VoxelSet*)negativePartP;
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
negativePart->m_minBB[h] = positivePart->m_minBB[h] = m_minBB[h];
|
||
}
|
||
positivePart->m_voxels.Resize(0);
|
||
negativePart->m_voxels.Resize(0);
|
||
positivePart->m_voxels.Allocate(nVoxels);
|
||
negativePart->m_voxels.Allocate(nVoxels);
|
||
negativePart->m_scale = positivePart->m_scale = m_scale;
|
||
negativePart->m_unitVolume = positivePart->m_unitVolume = m_unitVolume;
|
||
negativePart->m_numVoxelsOnSurface = positivePart->m_numVoxelsOnSurface = 0;
|
||
negativePart->m_numVoxelsInsideSurface = positivePart->m_numVoxelsInsideSurface = 0;
|
||
|
||
double d;
|
||
Vec3<double> pt;
|
||
Voxel voxel;
|
||
const double d0 = m_scale;
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
voxel = m_voxels[v];
|
||
pt = GetPoint(voxel);
|
||
d = plane.m_a * pt[0] + plane.m_b * pt[1] + plane.m_c * pt[2] + plane.m_d;
|
||
if (d >= 0.0) {
|
||
if (voxel.m_data == PRIMITIVE_ON_SURFACE || d <= d0) {
|
||
voxel.m_data = PRIMITIVE_ON_SURFACE;
|
||
positivePart->m_voxels.PushBack(voxel);
|
||
++positivePart->m_numVoxelsOnSurface;
|
||
}
|
||
else {
|
||
positivePart->m_voxels.PushBack(voxel);
|
||
++positivePart->m_numVoxelsInsideSurface;
|
||
}
|
||
}
|
||
else {
|
||
if (voxel.m_data == PRIMITIVE_ON_SURFACE || -d <= d0) {
|
||
voxel.m_data = PRIMITIVE_ON_SURFACE;
|
||
negativePart->m_voxels.PushBack(voxel);
|
||
++negativePart->m_numVoxelsOnSurface;
|
||
}
|
||
else {
|
||
negativePart->m_voxels.PushBack(voxel);
|
||
++negativePart->m_numVoxelsInsideSurface;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
void VoxelSet::Convert(Mesh& mesh, const VOXEL_VALUE value) const
|
||
{
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
Voxel voxel;
|
||
Vec3<double> pts[8];
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
voxel = m_voxels[v];
|
||
if (voxel.m_data == value) {
|
||
GetPoints(voxel, pts);
|
||
int32_t s = (int32_t)mesh.GetNPoints();
|
||
for (int32_t k = 0; k < 8; ++k) {
|
||
mesh.AddPoint(pts[k]);
|
||
}
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 0, s + 2, s + 1));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 0, s + 3, s + 2));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 5, s + 6));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 6, s + 7));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 6, s + 2));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 2, s + 3));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 1, s + 5));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 0, s + 1));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 6, s + 5, s + 1));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 6, s + 1, s + 2));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 0, s + 4));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 3, s + 0));
|
||
}
|
||
}
|
||
}
|
||
void VoxelSet::ComputePrincipalAxes()
|
||
{
|
||
const size_t nVoxels = m_voxels.Size();
|
||
if (nVoxels == 0)
|
||
return;
|
||
m_barycenterPCA[0] = m_barycenterPCA[1] = m_barycenterPCA[2] = 0.0;
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
Voxel& voxel = m_voxels[v];
|
||
m_barycenterPCA[0] += voxel.m_coord[0];
|
||
m_barycenterPCA[1] += voxel.m_coord[1];
|
||
m_barycenterPCA[2] += voxel.m_coord[2];
|
||
}
|
||
m_barycenterPCA /= (double)nVoxels;
|
||
|
||
double covMat[3][3] = { { 0.0, 0.0, 0.0 },
|
||
{ 0.0, 0.0, 0.0 },
|
||
{ 0.0, 0.0, 0.0 } };
|
||
double x, y, z;
|
||
for (size_t v = 0; v < nVoxels; ++v) {
|
||
Voxel& voxel = m_voxels[v];
|
||
x = voxel.m_coord[0] - m_barycenter[0];
|
||
y = voxel.m_coord[1] - m_barycenter[1];
|
||
z = voxel.m_coord[2] - m_barycenter[2];
|
||
covMat[0][0] += x * x;
|
||
covMat[1][1] += y * y;
|
||
covMat[2][2] += z * z;
|
||
covMat[0][1] += x * y;
|
||
covMat[0][2] += x * z;
|
||
covMat[1][2] += y * z;
|
||
}
|
||
covMat[0][0] /= nVoxels;
|
||
covMat[1][1] /= nVoxels;
|
||
covMat[2][2] /= nVoxels;
|
||
covMat[0][1] /= nVoxels;
|
||
covMat[0][2] /= nVoxels;
|
||
covMat[1][2] /= nVoxels;
|
||
covMat[1][0] = covMat[0][1];
|
||
covMat[2][0] = covMat[0][2];
|
||
covMat[2][1] = covMat[1][2];
|
||
Diagonalize(covMat, m_Q, m_D);
|
||
}
|
||
Volume::Volume()
|
||
{
|
||
m_dim[0] = m_dim[1] = m_dim[2] = 0;
|
||
m_minBB[0] = m_minBB[1] = m_minBB[2] = 0.0;
|
||
m_maxBB[0] = m_maxBB[1] = m_maxBB[2] = 1.0;
|
||
m_numVoxelsOnSurface = 0;
|
||
m_numVoxelsInsideSurface = 0;
|
||
m_numVoxelsOutsideSurface = 0;
|
||
m_scale = 1.0;
|
||
m_data = 0;
|
||
}
|
||
Volume::~Volume(void)
|
||
{
|
||
delete[] m_data;
|
||
}
|
||
void Volume::Allocate()
|
||
{
|
||
delete[] m_data;
|
||
size_t size = m_dim[0] * m_dim[1] * m_dim[2];
|
||
m_data = new unsigned char[size];
|
||
memset(m_data, PRIMITIVE_UNDEFINED, sizeof(unsigned char) * size);
|
||
}
|
||
void Volume::Free()
|
||
{
|
||
delete[] m_data;
|
||
m_data = 0;
|
||
}
|
||
void Volume::FillOutsideSurface(const size_t i0,
|
||
const size_t j0,
|
||
const size_t k0,
|
||
const size_t i1,
|
||
const size_t j1,
|
||
const size_t k1)
|
||
{
|
||
const short neighbours[6][3] = { { 1, 0, 0 },
|
||
{ 0, 1, 0 },
|
||
{ 0, 0, 1 },
|
||
{ -1, 0, 0 },
|
||
{ 0, -1, 0 },
|
||
{ 0, 0, -1 } };
|
||
std::queue<Vec3<short> > fifo;
|
||
Vec3<short> current;
|
||
short a, b, c;
|
||
for (size_t i = i0; i < i1; ++i) {
|
||
for (size_t j = j0; j < j1; ++j) {
|
||
for (size_t k = k0; k < k1; ++k) {
|
||
|
||
if (GetVoxel(i, j, k) == PRIMITIVE_UNDEFINED) {
|
||
current[0] = (short)i;
|
||
current[1] = (short)j;
|
||
current[2] = (short)k;
|
||
fifo.push(current);
|
||
GetVoxel(current[0], current[1], current[2]) = PRIMITIVE_OUTSIDE_SURFACE;
|
||
++m_numVoxelsOutsideSurface;
|
||
while (fifo.size() > 0) {
|
||
current = fifo.front();
|
||
fifo.pop();
|
||
for (int32_t h = 0; h < 6; ++h) {
|
||
a = current[0] + neighbours[h][0];
|
||
b = current[1] + neighbours[h][1];
|
||
c = current[2] + neighbours[h][2];
|
||
if (a < 0 || a >= (int32_t)m_dim[0] || b < 0 || b >= (int32_t)m_dim[1] || c < 0 || c >= (int32_t)m_dim[2]) {
|
||
continue;
|
||
}
|
||
unsigned char& v = GetVoxel(a, b, c);
|
||
if (v == PRIMITIVE_UNDEFINED) {
|
||
v = PRIMITIVE_OUTSIDE_SURFACE;
|
||
++m_numVoxelsOutsideSurface;
|
||
fifo.push(Vec3<short>(a, b, c));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
void Volume::FillInsideSurface()
|
||
{
|
||
const size_t i0 = m_dim[0];
|
||
const size_t j0 = m_dim[1];
|
||
const size_t k0 = m_dim[2];
|
||
for (size_t i = 0; i < i0; ++i) {
|
||
for (size_t j = 0; j < j0; ++j) {
|
||
for (size_t k = 0; k < k0; ++k) {
|
||
unsigned char& v = GetVoxel(i, j, k);
|
||
if (v == PRIMITIVE_UNDEFINED) {
|
||
v = PRIMITIVE_INSIDE_SURFACE;
|
||
++m_numVoxelsInsideSurface;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
void Volume::Convert(Mesh& mesh, const VOXEL_VALUE value) const
|
||
{
|
||
const size_t i0 = m_dim[0];
|
||
const size_t j0 = m_dim[1];
|
||
const size_t k0 = m_dim[2];
|
||
for (size_t i = 0; i < i0; ++i) {
|
||
for (size_t j = 0; j < j0; ++j) {
|
||
for (size_t k = 0; k < k0; ++k) {
|
||
const unsigned char& voxel = GetVoxel(i, j, k);
|
||
if (voxel == value) {
|
||
Vec3<double> p0((i - 0.5) * m_scale, (j - 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p1((i + 0.5) * m_scale, (j - 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p2((i + 0.5) * m_scale, (j + 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p3((i - 0.5) * m_scale, (j + 0.5) * m_scale, (k - 0.5) * m_scale);
|
||
Vec3<double> p4((i - 0.5) * m_scale, (j - 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
Vec3<double> p5((i + 0.5) * m_scale, (j - 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
Vec3<double> p6((i + 0.5) * m_scale, (j + 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
Vec3<double> p7((i - 0.5) * m_scale, (j + 0.5) * m_scale, (k + 0.5) * m_scale);
|
||
int32_t s = (int32_t)mesh.GetNPoints();
|
||
mesh.AddPoint(p0 + m_minBB);
|
||
mesh.AddPoint(p1 + m_minBB);
|
||
mesh.AddPoint(p2 + m_minBB);
|
||
mesh.AddPoint(p3 + m_minBB);
|
||
mesh.AddPoint(p4 + m_minBB);
|
||
mesh.AddPoint(p5 + m_minBB);
|
||
mesh.AddPoint(p6 + m_minBB);
|
||
mesh.AddPoint(p7 + m_minBB);
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 0, s + 2, s + 1));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 0, s + 3, s + 2));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 5, s + 6));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 6, s + 7));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 6, s + 2));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 2, s + 3));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 1, s + 5));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 4, s + 0, s + 1));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 6, s + 5, s + 1));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 6, s + 1, s + 2));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 0, s + 4));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 7, s + 3, s + 0));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
void Volume::Convert(VoxelSet& vset) const
|
||
{
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
vset.m_minBB[h] = m_minBB[h];
|
||
}
|
||
vset.m_voxels.Allocate(m_numVoxelsInsideSurface + m_numVoxelsOnSurface);
|
||
vset.m_scale = m_scale;
|
||
vset.m_unitVolume = m_scale * m_scale * m_scale;
|
||
const short i0 = (short)m_dim[0];
|
||
const short j0 = (short)m_dim[1];
|
||
const short k0 = (short)m_dim[2];
|
||
Voxel voxel;
|
||
vset.m_numVoxelsOnSurface = 0;
|
||
vset.m_numVoxelsInsideSurface = 0;
|
||
for (short i = 0; i < i0; ++i) {
|
||
for (short j = 0; j < j0; ++j) {
|
||
for (short k = 0; k < k0; ++k) {
|
||
const unsigned char& value = GetVoxel(i, j, k);
|
||
if (value == PRIMITIVE_INSIDE_SURFACE) {
|
||
voxel.m_coord[0] = i;
|
||
voxel.m_coord[1] = j;
|
||
voxel.m_coord[2] = k;
|
||
voxel.m_data = PRIMITIVE_INSIDE_SURFACE;
|
||
vset.m_voxels.PushBack(voxel);
|
||
++vset.m_numVoxelsInsideSurface;
|
||
}
|
||
else if (value == PRIMITIVE_ON_SURFACE) {
|
||
voxel.m_coord[0] = i;
|
||
voxel.m_coord[1] = j;
|
||
voxel.m_coord[2] = k;
|
||
voxel.m_data = PRIMITIVE_ON_SURFACE;
|
||
vset.m_voxels.PushBack(voxel);
|
||
++vset.m_numVoxelsOnSurface;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void Volume::Convert(TetrahedronSet& tset) const
|
||
{
|
||
tset.m_tetrahedra.Allocate(5 * (m_numVoxelsInsideSurface + m_numVoxelsOnSurface));
|
||
tset.m_scale = m_scale;
|
||
const short i0 = (short)m_dim[0];
|
||
const short j0 = (short)m_dim[1];
|
||
const short k0 = (short)m_dim[2];
|
||
tset.m_numTetrahedraOnSurface = 0;
|
||
tset.m_numTetrahedraInsideSurface = 0;
|
||
Tetrahedron tetrahedron;
|
||
for (short i = 0; i < i0; ++i) {
|
||
for (short j = 0; j < j0; ++j) {
|
||
for (short k = 0; k < k0; ++k) {
|
||
const unsigned char& value = GetVoxel(i, j, k);
|
||
if (value == PRIMITIVE_INSIDE_SURFACE || value == PRIMITIVE_ON_SURFACE) {
|
||
tetrahedron.m_data = value;
|
||
Vec3<double> p1((i - 0.5) * m_scale + m_minBB[0], (j - 0.5) * m_scale + m_minBB[1], (k - 0.5) * m_scale + m_minBB[2]);
|
||
Vec3<double> p2((i + 0.5) * m_scale + m_minBB[0], (j - 0.5) * m_scale + m_minBB[1], (k - 0.5) * m_scale + m_minBB[2]);
|
||
Vec3<double> p3((i + 0.5) * m_scale + m_minBB[0], (j + 0.5) * m_scale + m_minBB[1], (k - 0.5) * m_scale + m_minBB[2]);
|
||
Vec3<double> p4((i - 0.5) * m_scale + m_minBB[0], (j + 0.5) * m_scale + m_minBB[1], (k - 0.5) * m_scale + m_minBB[2]);
|
||
Vec3<double> p5((i - 0.5) * m_scale + m_minBB[0], (j - 0.5) * m_scale + m_minBB[1], (k + 0.5) * m_scale + m_minBB[2]);
|
||
Vec3<double> p6((i + 0.5) * m_scale + m_minBB[0], (j - 0.5) * m_scale + m_minBB[1], (k + 0.5) * m_scale + m_minBB[2]);
|
||
Vec3<double> p7((i + 0.5) * m_scale + m_minBB[0], (j + 0.5) * m_scale + m_minBB[1], (k + 0.5) * m_scale + m_minBB[2]);
|
||
Vec3<double> p8((i - 0.5) * m_scale + m_minBB[0], (j + 0.5) * m_scale + m_minBB[1], (k + 0.5) * m_scale + m_minBB[2]);
|
||
|
||
tetrahedron.m_pts[0] = p2;
|
||
tetrahedron.m_pts[1] = p4;
|
||
tetrahedron.m_pts[2] = p7;
|
||
tetrahedron.m_pts[3] = p5;
|
||
tset.m_tetrahedra.PushBack(tetrahedron);
|
||
|
||
tetrahedron.m_pts[0] = p6;
|
||
tetrahedron.m_pts[1] = p2;
|
||
tetrahedron.m_pts[2] = p7;
|
||
tetrahedron.m_pts[3] = p5;
|
||
tset.m_tetrahedra.PushBack(tetrahedron);
|
||
|
||
tetrahedron.m_pts[0] = p3;
|
||
tetrahedron.m_pts[1] = p4;
|
||
tetrahedron.m_pts[2] = p7;
|
||
tetrahedron.m_pts[3] = p2;
|
||
tset.m_tetrahedra.PushBack(tetrahedron);
|
||
|
||
tetrahedron.m_pts[0] = p1;
|
||
tetrahedron.m_pts[1] = p4;
|
||
tetrahedron.m_pts[2] = p2;
|
||
tetrahedron.m_pts[3] = p5;
|
||
tset.m_tetrahedra.PushBack(tetrahedron);
|
||
|
||
tetrahedron.m_pts[0] = p8;
|
||
tetrahedron.m_pts[1] = p5;
|
||
tetrahedron.m_pts[2] = p7;
|
||
tetrahedron.m_pts[3] = p4;
|
||
tset.m_tetrahedra.PushBack(tetrahedron);
|
||
if (value == PRIMITIVE_INSIDE_SURFACE) {
|
||
tset.m_numTetrahedraInsideSurface += 5;
|
||
}
|
||
else {
|
||
tset.m_numTetrahedraOnSurface += 5;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void Volume::AlignToPrincipalAxes(double (&rot)[3][3]) const
|
||
{
|
||
const short i0 = (short)m_dim[0];
|
||
const short j0 = (short)m_dim[1];
|
||
const short k0 = (short)m_dim[2];
|
||
Vec3<double> barycenter(0.0);
|
||
size_t nVoxels = 0;
|
||
for (short i = 0; i < i0; ++i) {
|
||
for (short j = 0; j < j0; ++j) {
|
||
for (short k = 0; k < k0; ++k) {
|
||
const unsigned char& value = GetVoxel(i, j, k);
|
||
if (value == PRIMITIVE_INSIDE_SURFACE || value == PRIMITIVE_ON_SURFACE) {
|
||
barycenter[0] += i;
|
||
barycenter[1] += j;
|
||
barycenter[2] += k;
|
||
++nVoxels;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
barycenter /= (double)nVoxels;
|
||
|
||
double covMat[3][3] = { { 0.0, 0.0, 0.0 },
|
||
{ 0.0, 0.0, 0.0 },
|
||
{ 0.0, 0.0, 0.0 } };
|
||
double x, y, z;
|
||
for (short i = 0; i < i0; ++i) {
|
||
for (short j = 0; j < j0; ++j) {
|
||
for (short k = 0; k < k0; ++k) {
|
||
const unsigned char& value = GetVoxel(i, j, k);
|
||
if (value == PRIMITIVE_INSIDE_SURFACE || value == PRIMITIVE_ON_SURFACE) {
|
||
x = i - barycenter[0];
|
||
y = j - barycenter[1];
|
||
z = k - barycenter[2];
|
||
covMat[0][0] += x * x;
|
||
covMat[1][1] += y * y;
|
||
covMat[2][2] += z * z;
|
||
covMat[0][1] += x * y;
|
||
covMat[0][2] += x * z;
|
||
covMat[1][2] += y * z;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
covMat[1][0] = covMat[0][1];
|
||
covMat[2][0] = covMat[0][2];
|
||
covMat[2][1] = covMat[1][2];
|
||
double D[3][3];
|
||
Diagonalize(covMat, rot, D);
|
||
}
|
||
TetrahedronSet::TetrahedronSet()
|
||
{
|
||
m_minBB[0] = m_minBB[1] = m_minBB[2] = 0.0;
|
||
m_maxBB[0] = m_maxBB[1] = m_maxBB[2] = 1.0;
|
||
m_barycenter[0] = m_barycenter[1] = m_barycenter[2] = 0.0;
|
||
m_scale = 1.0;
|
||
m_numTetrahedraOnSurface = 0;
|
||
m_numTetrahedraInsideSurface = 0;
|
||
memset(m_Q, 0, sizeof(double) * 9);
|
||
memset(m_D, 0, sizeof(double) * 9);
|
||
}
|
||
TetrahedronSet::~TetrahedronSet(void)
|
||
{
|
||
}
|
||
void TetrahedronSet::ComputeBB()
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
m_minBB[h] = m_maxBB[h] = m_tetrahedra[0].m_pts[0][h];
|
||
m_barycenter[h] = 0.0;
|
||
}
|
||
for (size_t p = 0; p < nTetrahedra; ++p) {
|
||
for (int32_t i = 0; i < 4; ++i) {
|
||
for (int32_t h = 0; h < 3; ++h) {
|
||
if (m_minBB[h] > m_tetrahedra[p].m_pts[i][h])
|
||
m_minBB[h] = m_tetrahedra[p].m_pts[i][h];
|
||
if (m_maxBB[h] < m_tetrahedra[p].m_pts[i][h])
|
||
m_maxBB[h] = m_tetrahedra[p].m_pts[i][h];
|
||
m_barycenter[h] += m_tetrahedra[p].m_pts[i][h];
|
||
}
|
||
}
|
||
}
|
||
m_barycenter /= (double)(4 * nTetrahedra);
|
||
}
|
||
void TetrahedronSet::ComputeConvexHull(Mesh& meshCH, const size_t sampling) const
|
||
{
|
||
const size_t CLUSTER_SIZE = 65536;
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
|
||
SArray<Vec3<double> > cpoints;
|
||
|
||
Vec3<double>* points = new Vec3<double>[CLUSTER_SIZE];
|
||
size_t p = 0;
|
||
while (p < nTetrahedra) {
|
||
size_t q = 0;
|
||
size_t s = 0;
|
||
while (q < CLUSTER_SIZE && p < nTetrahedra) {
|
||
if (m_tetrahedra[p].m_data == PRIMITIVE_ON_SURFACE) {
|
||
++s;
|
||
if (s == sampling) {
|
||
s = 0;
|
||
for (int32_t a = 0; a < 4; ++a) {
|
||
points[q++] = m_tetrahedra[p].m_pts[a];
|
||
for (int32_t xx = 0; xx < 3; ++xx) {
|
||
assert(m_tetrahedra[p].m_pts[a][xx] + EPS >= m_minBB[xx]);
|
||
assert(m_tetrahedra[p].m_pts[a][xx] <= m_maxBB[xx] + EPS);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
++p;
|
||
}
|
||
btConvexHullComputer ch;
|
||
ch.compute((double*)points, 3 * sizeof(double), (int32_t)q, -1.0, -1.0);
|
||
for (int32_t v = 0; v < ch.vertices.size(); v++) {
|
||
cpoints.PushBack(Vec3<double>(ch.vertices[v].getX(), ch.vertices[v].getY(), ch.vertices[v].getZ()));
|
||
}
|
||
}
|
||
delete[] points;
|
||
|
||
points = cpoints.Data();
|
||
btConvexHullComputer ch;
|
||
ch.compute((double*)points, 3 * sizeof(double), (int32_t)cpoints.Size(), -1.0, -1.0);
|
||
meshCH.ResizePoints(0);
|
||
meshCH.ResizeTriangles(0);
|
||
for (int32_t v = 0; v < ch.vertices.size(); v++) {
|
||
meshCH.AddPoint(Vec3<double>(ch.vertices[v].getX(), ch.vertices[v].getY(), ch.vertices[v].getZ()));
|
||
}
|
||
const int32_t nt = ch.faces.size();
|
||
for (int32_t t = 0; t < nt; ++t) {
|
||
const btConvexHullComputer::Edge* sourceEdge = &(ch.edges[ch.faces[t]]);
|
||
int32_t a = sourceEdge->getSourceVertex();
|
||
int32_t b = sourceEdge->getTargetVertex();
|
||
const btConvexHullComputer::Edge* edge = sourceEdge->getNextEdgeOfFace();
|
||
int32_t c = edge->getTargetVertex();
|
||
while (c != a) {
|
||
meshCH.AddTriangle(Vec3<int32_t>(a, b, c));
|
||
edge = edge->getNextEdgeOfFace();
|
||
b = c;
|
||
c = edge->getTargetVertex();
|
||
}
|
||
}
|
||
}
|
||
inline bool TetrahedronSet::Add(Tetrahedron& tetrahedron)
|
||
{
|
||
double v = ComputeVolume4(tetrahedron.m_pts[0], tetrahedron.m_pts[1], tetrahedron.m_pts[2], tetrahedron.m_pts[3]);
|
||
|
||
const double EPS = 0.0000000001;
|
||
if (fabs(v) < EPS) {
|
||
return false;
|
||
}
|
||
else if (v < 0.0) {
|
||
Vec3<double> tmp = tetrahedron.m_pts[0];
|
||
tetrahedron.m_pts[0] = tetrahedron.m_pts[1];
|
||
tetrahedron.m_pts[1] = tmp;
|
||
}
|
||
|
||
for (int32_t a = 0; a < 4; ++a) {
|
||
for (int32_t xx = 0; xx < 3; ++xx) {
|
||
assert(tetrahedron.m_pts[a][xx] + EPS >= m_minBB[xx]);
|
||
assert(tetrahedron.m_pts[a][xx] <= m_maxBB[xx] + EPS);
|
||
}
|
||
}
|
||
m_tetrahedra.PushBack(tetrahedron);
|
||
return true;
|
||
}
|
||
|
||
void TetrahedronSet::AddClippedTetrahedra(const Vec3<double> (&pts)[10], const int32_t nPts)
|
||
{
|
||
const int32_t tetF[4][3] = { { 0, 1, 2 }, { 2, 1, 3 }, { 3, 1, 0 }, { 3, 0, 2 } };
|
||
if (nPts < 4) {
|
||
return;
|
||
}
|
||
else if (nPts == 4) {
|
||
Tetrahedron tetrahedron;
|
||
tetrahedron.m_data = PRIMITIVE_ON_SURFACE;
|
||
tetrahedron.m_pts[0] = pts[0];
|
||
tetrahedron.m_pts[1] = pts[1];
|
||
tetrahedron.m_pts[2] = pts[2];
|
||
tetrahedron.m_pts[3] = pts[3];
|
||
if (Add(tetrahedron)) {
|
||
++m_numTetrahedraOnSurface;
|
||
}
|
||
}
|
||
else if (nPts == 5) {
|
||
const int32_t tet[15][4] = {
|
||
{ 0, 1, 2, 3 }, { 1, 2, 3, 4 }, { 0, 2, 3, 4 }, { 0, 1, 3, 4 }, { 0, 1, 2, 4 },
|
||
};
|
||
const int32_t rem[5] = { 4, 0, 1, 2, 3 };
|
||
double maxVol = 0.0;
|
||
int32_t h0 = -1;
|
||
Tetrahedron tetrahedron0;
|
||
tetrahedron0.m_data = PRIMITIVE_ON_SURFACE;
|
||
for (int32_t h = 0; h < 5; ++h) {
|
||
double v = ComputeVolume4(pts[tet[h][0]], pts[tet[h][1]], pts[tet[h][2]], pts[tet[h][3]]);
|
||
if (v > maxVol) {
|
||
h0 = h;
|
||
tetrahedron0.m_pts[0] = pts[tet[h][0]];
|
||
tetrahedron0.m_pts[1] = pts[tet[h][1]];
|
||
tetrahedron0.m_pts[2] = pts[tet[h][2]];
|
||
tetrahedron0.m_pts[3] = pts[tet[h][3]];
|
||
maxVol = v;
|
||
}
|
||
else if (-v > maxVol) {
|
||
h0 = h;
|
||
tetrahedron0.m_pts[0] = pts[tet[h][1]];
|
||
tetrahedron0.m_pts[1] = pts[tet[h][0]];
|
||
tetrahedron0.m_pts[2] = pts[tet[h][2]];
|
||
tetrahedron0.m_pts[3] = pts[tet[h][3]];
|
||
maxVol = -v;
|
||
}
|
||
}
|
||
if (h0 == -1)
|
||
return;
|
||
if (Add(tetrahedron0)) {
|
||
++m_numTetrahedraOnSurface;
|
||
}
|
||
else {
|
||
return;
|
||
}
|
||
int32_t a = rem[h0];
|
||
maxVol = 0.0;
|
||
int32_t h1 = -1;
|
||
Tetrahedron tetrahedron1;
|
||
tetrahedron1.m_data = PRIMITIVE_ON_SURFACE;
|
||
for (int32_t h = 0; h < 4; ++h) {
|
||
double v = ComputeVolume4(pts[a], tetrahedron0.m_pts[tetF[h][0]], tetrahedron0.m_pts[tetF[h][1]], tetrahedron0.m_pts[tetF[h][2]]);
|
||
if (v > maxVol) {
|
||
h1 = h;
|
||
tetrahedron1.m_pts[0] = pts[a];
|
||
tetrahedron1.m_pts[1] = tetrahedron0.m_pts[tetF[h][0]];
|
||
tetrahedron1.m_pts[2] = tetrahedron0.m_pts[tetF[h][1]];
|
||
tetrahedron1.m_pts[3] = tetrahedron0.m_pts[tetF[h][2]];
|
||
maxVol = v;
|
||
}
|
||
}
|
||
if (h1 == -1 && Add(tetrahedron1)) {
|
||
++m_numTetrahedraOnSurface;
|
||
}
|
||
}
|
||
else if (nPts == 6) {
|
||
|
||
const int32_t tet[15][4] = { { 2, 3, 4, 5 }, { 1, 3, 4, 5 }, { 1, 2, 4, 5 }, { 1, 2, 3, 5 }, { 1, 2, 3, 4 },
|
||
{ 0, 3, 4, 5 }, { 0, 2, 4, 5 }, { 0, 2, 3, 5 }, { 0, 2, 3, 4 }, { 0, 1, 4, 5 },
|
||
{ 0, 1, 3, 5 }, { 0, 1, 3, 4 }, { 0, 1, 2, 5 }, { 0, 1, 2, 4 }, { 0, 1, 2, 3 } };
|
||
const int32_t rem[15][2] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
|
||
{ 1, 2 }, { 1, 3 }, { 1, 4 }, { 1, 5 }, { 2, 3 },
|
||
{ 2, 4 }, { 2, 5 }, { 3, 4 }, { 3, 5 }, { 4, 5 } };
|
||
double maxVol = 0.0;
|
||
int32_t h0 = -1;
|
||
Tetrahedron tetrahedron0;
|
||
tetrahedron0.m_data = PRIMITIVE_ON_SURFACE;
|
||
for (int32_t h = 0; h < 15; ++h) {
|
||
double v = ComputeVolume4(pts[tet[h][0]], pts[tet[h][1]], pts[tet[h][2]], pts[tet[h][3]]);
|
||
if (v > maxVol) {
|
||
h0 = h;
|
||
tetrahedron0.m_pts[0] = pts[tet[h][0]];
|
||
tetrahedron0.m_pts[1] = pts[tet[h][1]];
|
||
tetrahedron0.m_pts[2] = pts[tet[h][2]];
|
||
tetrahedron0.m_pts[3] = pts[tet[h][3]];
|
||
maxVol = v;
|
||
}
|
||
else if (-v > maxVol) {
|
||
h0 = h;
|
||
tetrahedron0.m_pts[0] = pts[tet[h][1]];
|
||
tetrahedron0.m_pts[1] = pts[tet[h][0]];
|
||
tetrahedron0.m_pts[2] = pts[tet[h][2]];
|
||
tetrahedron0.m_pts[3] = pts[tet[h][3]];
|
||
maxVol = -v;
|
||
}
|
||
}
|
||
if (h0 == -1)
|
||
return;
|
||
if (Add(tetrahedron0)) {
|
||
++m_numTetrahedraOnSurface;
|
||
}
|
||
else {
|
||
return;
|
||
}
|
||
|
||
int32_t a0 = rem[h0][0];
|
||
int32_t a1 = rem[h0][1];
|
||
int32_t h1 = -1;
|
||
Tetrahedron tetrahedron1;
|
||
tetrahedron1.m_data = PRIMITIVE_ON_SURFACE;
|
||
maxVol = 0.0;
|
||
for (int32_t h = 0; h < 4; ++h) {
|
||
double v = ComputeVolume4(pts[a0], tetrahedron0.m_pts[tetF[h][0]], tetrahedron0.m_pts[tetF[h][1]], tetrahedron0.m_pts[tetF[h][2]]);
|
||
if (v > maxVol) {
|
||
h1 = h;
|
||
tetrahedron1.m_pts[0] = pts[a0];
|
||
tetrahedron1.m_pts[1] = tetrahedron0.m_pts[tetF[h][0]];
|
||
tetrahedron1.m_pts[2] = tetrahedron0.m_pts[tetF[h][1]];
|
||
tetrahedron1.m_pts[3] = tetrahedron0.m_pts[tetF[h][2]];
|
||
maxVol = v;
|
||
}
|
||
}
|
||
if (h1 != -1 && Add(tetrahedron1)) {
|
||
++m_numTetrahedraOnSurface;
|
||
}
|
||
else {
|
||
h1 = -1;
|
||
}
|
||
maxVol = 0.0;
|
||
int32_t h2 = -1;
|
||
Tetrahedron tetrahedron2;
|
||
tetrahedron2.m_data = PRIMITIVE_ON_SURFACE;
|
||
for (int32_t h = 0; h < 4; ++h) {
|
||
double v = ComputeVolume4(pts[a0], tetrahedron0.m_pts[tetF[h][0]], tetrahedron0.m_pts[tetF[h][1]], tetrahedron0.m_pts[tetF[h][2]]);
|
||
if (h == h1)
|
||
continue;
|
||
if (v > maxVol) {
|
||
h2 = h;
|
||
tetrahedron2.m_pts[0] = pts[a1];
|
||
tetrahedron2.m_pts[1] = tetrahedron0.m_pts[tetF[h][0]];
|
||
tetrahedron2.m_pts[2] = tetrahedron0.m_pts[tetF[h][1]];
|
||
tetrahedron2.m_pts[3] = tetrahedron0.m_pts[tetF[h][2]];
|
||
maxVol = v;
|
||
}
|
||
}
|
||
if (h1 != -1) {
|
||
for (int32_t h = 0; h < 4; ++h) {
|
||
double v = ComputeVolume4(pts[a1], tetrahedron1.m_pts[tetF[h][0]], tetrahedron1.m_pts[tetF[h][1]], tetrahedron1.m_pts[tetF[h][2]]);
|
||
if (h == 1)
|
||
continue;
|
||
if (v > maxVol) {
|
||
h2 = h;
|
||
tetrahedron2.m_pts[0] = pts[a1];
|
||
tetrahedron2.m_pts[1] = tetrahedron1.m_pts[tetF[h][0]];
|
||
tetrahedron2.m_pts[2] = tetrahedron1.m_pts[tetF[h][1]];
|
||
tetrahedron2.m_pts[3] = tetrahedron1.m_pts[tetF[h][2]];
|
||
maxVol = v;
|
||
}
|
||
}
|
||
}
|
||
if (h2 != -1 && Add(tetrahedron2)) {
|
||
++m_numTetrahedraOnSurface;
|
||
}
|
||
}
|
||
else {
|
||
assert(0);
|
||
}
|
||
}
|
||
|
||
void TetrahedronSet::Intersect(const Plane& plane,
|
||
SArray<Vec3<double> >* const positivePts,
|
||
SArray<Vec3<double> >* const negativePts,
|
||
const size_t sampling) const
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
}
|
||
void TetrahedronSet::ComputeExteriorPoints(const Plane& plane,
|
||
const Mesh& mesh,
|
||
SArray<Vec3<double> >* const exteriorPts) const
|
||
{
|
||
}
|
||
void TetrahedronSet::ComputeClippedVolumes(const Plane& plane,
|
||
double& positiveVolume,
|
||
double& negativeVolume) const
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
}
|
||
|
||
void TetrahedronSet::SelectOnSurface(PrimitiveSet* const onSurfP) const
|
||
{
|
||
TetrahedronSet* const onSurf = (TetrahedronSet*)onSurfP;
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
onSurf->m_tetrahedra.Resize(0);
|
||
onSurf->m_scale = m_scale;
|
||
onSurf->m_numTetrahedraOnSurface = 0;
|
||
onSurf->m_numTetrahedraInsideSurface = 0;
|
||
onSurf->m_barycenter = m_barycenter;
|
||
onSurf->m_minBB = m_minBB;
|
||
onSurf->m_maxBB = m_maxBB;
|
||
for (int32_t i = 0; i < 3; ++i) {
|
||
for (int32_t j = 0; j < 3; ++j) {
|
||
onSurf->m_Q[i][j] = m_Q[i][j];
|
||
onSurf->m_D[i][j] = m_D[i][j];
|
||
}
|
||
}
|
||
Tetrahedron tetrahedron;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
tetrahedron = m_tetrahedra[v];
|
||
if (tetrahedron.m_data == PRIMITIVE_ON_SURFACE) {
|
||
onSurf->m_tetrahedra.PushBack(tetrahedron);
|
||
++onSurf->m_numTetrahedraOnSurface;
|
||
}
|
||
}
|
||
}
|
||
void TetrahedronSet::Clip(const Plane& plane,
|
||
PrimitiveSet* const positivePartP,
|
||
PrimitiveSet* const negativePartP) const
|
||
{
|
||
TetrahedronSet* const positivePart = (TetrahedronSet*)positivePartP;
|
||
TetrahedronSet* const negativePart = (TetrahedronSet*)negativePartP;
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
positivePart->m_tetrahedra.Resize(0);
|
||
negativePart->m_tetrahedra.Resize(0);
|
||
positivePart->m_tetrahedra.Allocate(nTetrahedra);
|
||
negativePart->m_tetrahedra.Allocate(nTetrahedra);
|
||
negativePart->m_scale = positivePart->m_scale = m_scale;
|
||
negativePart->m_numTetrahedraOnSurface = positivePart->m_numTetrahedraOnSurface = 0;
|
||
negativePart->m_numTetrahedraInsideSurface = positivePart->m_numTetrahedraInsideSurface = 0;
|
||
negativePart->m_barycenter = m_barycenter;
|
||
positivePart->m_barycenter = m_barycenter;
|
||
negativePart->m_minBB = m_minBB;
|
||
positivePart->m_minBB = m_minBB;
|
||
negativePart->m_maxBB = m_maxBB;
|
||
positivePart->m_maxBB = m_maxBB;
|
||
for (int32_t i = 0; i < 3; ++i) {
|
||
for (int32_t j = 0; j < 3; ++j) {
|
||
negativePart->m_Q[i][j] = positivePart->m_Q[i][j] = m_Q[i][j];
|
||
negativePart->m_D[i][j] = positivePart->m_D[i][j] = m_D[i][j];
|
||
}
|
||
}
|
||
|
||
Tetrahedron tetrahedron;
|
||
double delta, alpha;
|
||
int32_t sign[4];
|
||
int32_t npos, nneg;
|
||
Vec3<double> posPts[10];
|
||
Vec3<double> negPts[10];
|
||
Vec3<double> P0, P1, M;
|
||
const Vec3<double> n(plane.m_a, plane.m_b, plane.m_c);
|
||
const int32_t edges[6][2] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 } };
|
||
double dist;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
tetrahedron = m_tetrahedra[v];
|
||
npos = nneg = 0;
|
||
for (int32_t i = 0; i < 4; ++i) {
|
||
dist = plane.m_a * tetrahedron.m_pts[i][0] + plane.m_b * tetrahedron.m_pts[i][1] + plane.m_c * tetrahedron.m_pts[i][2] + plane.m_d;
|
||
if (dist > 0.0) {
|
||
sign[i] = 1;
|
||
posPts[npos] = tetrahedron.m_pts[i];
|
||
++npos;
|
||
}
|
||
else {
|
||
sign[i] = -1;
|
||
negPts[nneg] = tetrahedron.m_pts[i];
|
||
++nneg;
|
||
}
|
||
}
|
||
|
||
if (npos == 4) {
|
||
positivePart->Add(tetrahedron);
|
||
if (tetrahedron.m_data == PRIMITIVE_ON_SURFACE) {
|
||
++positivePart->m_numTetrahedraOnSurface;
|
||
}
|
||
else {
|
||
++positivePart->m_numTetrahedraInsideSurface;
|
||
}
|
||
}
|
||
else if (nneg == 4) {
|
||
negativePart->Add(tetrahedron);
|
||
if (tetrahedron.m_data == PRIMITIVE_ON_SURFACE) {
|
||
++negativePart->m_numTetrahedraOnSurface;
|
||
}
|
||
else {
|
||
++negativePart->m_numTetrahedraInsideSurface;
|
||
}
|
||
}
|
||
else {
|
||
int32_t nnew = 0;
|
||
for (int32_t j = 0; j < 6; ++j) {
|
||
if (sign[edges[j][0]] * sign[edges[j][1]] == -1) {
|
||
P0 = tetrahedron.m_pts[edges[j][0]];
|
||
P1 = tetrahedron.m_pts[edges[j][1]];
|
||
delta = (P0 - P1) * n;
|
||
alpha = -(plane.m_d + (n * P1)) / delta;
|
||
assert(alpha >= 0.0 && alpha <= 1.0);
|
||
M = alpha * P0 + (1 - alpha) * P1;
|
||
for (int32_t xx = 0; xx < 3; ++xx) {
|
||
assert(M[xx] + EPS >= m_minBB[xx]);
|
||
assert(M[xx] <= m_maxBB[xx] + EPS);
|
||
}
|
||
posPts[npos++] = M;
|
||
negPts[nneg++] = M;
|
||
++nnew;
|
||
}
|
||
}
|
||
negativePart->AddClippedTetrahedra(negPts, nneg);
|
||
positivePart->AddClippedTetrahedra(posPts, npos);
|
||
}
|
||
}
|
||
}
|
||
void TetrahedronSet::Convert(Mesh& mesh, const VOXEL_VALUE value) const
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
const Tetrahedron& tetrahedron = m_tetrahedra[v];
|
||
if (tetrahedron.m_data == value) {
|
||
int32_t s = (int32_t)mesh.GetNPoints();
|
||
mesh.AddPoint(tetrahedron.m_pts[0]);
|
||
mesh.AddPoint(tetrahedron.m_pts[1]);
|
||
mesh.AddPoint(tetrahedron.m_pts[2]);
|
||
mesh.AddPoint(tetrahedron.m_pts[3]);
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 0, s + 1, s + 2));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 2, s + 1, s + 3));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 3, s + 1, s + 0));
|
||
mesh.AddTriangle(Vec3<int32_t>(s + 3, s + 0, s + 2));
|
||
}
|
||
}
|
||
}
|
||
const double TetrahedronSet::ComputeVolume() const
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return 0.0;
|
||
double volume = 0.0;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
const Tetrahedron& tetrahedron = m_tetrahedra[v];
|
||
volume += fabs(ComputeVolume4(tetrahedron.m_pts[0], tetrahedron.m_pts[1], tetrahedron.m_pts[2], tetrahedron.m_pts[3]));
|
||
}
|
||
return volume / 6.0;
|
||
}
|
||
const double TetrahedronSet::ComputeMaxVolumeError() const
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return 0.0;
|
||
double volume = 0.0;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
const Tetrahedron& tetrahedron = m_tetrahedra[v];
|
||
if (tetrahedron.m_data == PRIMITIVE_ON_SURFACE) {
|
||
volume += fabs(ComputeVolume4(tetrahedron.m_pts[0], tetrahedron.m_pts[1], tetrahedron.m_pts[2], tetrahedron.m_pts[3]));
|
||
}
|
||
}
|
||
return volume / 6.0;
|
||
}
|
||
void TetrahedronSet::RevertAlignToPrincipalAxes()
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
double x, y, z;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
Tetrahedron& tetrahedron = m_tetrahedra[v];
|
||
for (int32_t i = 0; i < 4; ++i) {
|
||
x = tetrahedron.m_pts[i][0] - m_barycenter[0];
|
||
y = tetrahedron.m_pts[i][1] - m_barycenter[1];
|
||
z = tetrahedron.m_pts[i][2] - m_barycenter[2];
|
||
tetrahedron.m_pts[i][0] = m_Q[0][0] * x + m_Q[0][1] * y + m_Q[0][2] * z + m_barycenter[0];
|
||
tetrahedron.m_pts[i][1] = m_Q[1][0] * x + m_Q[1][1] * y + m_Q[1][2] * z + m_barycenter[1];
|
||
tetrahedron.m_pts[i][2] = m_Q[2][0] * x + m_Q[2][1] * y + m_Q[2][2] * z + m_barycenter[2];
|
||
}
|
||
}
|
||
ComputeBB();
|
||
}
|
||
void TetrahedronSet::ComputePrincipalAxes()
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
double covMat[3][3] = { { 0.0, 0.0, 0.0 },
|
||
{ 0.0, 0.0, 0.0 },
|
||
{ 0.0, 0.0, 0.0 } };
|
||
double x, y, z;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
Tetrahedron& tetrahedron = m_tetrahedra[v];
|
||
for (int32_t i = 0; i < 4; ++i) {
|
||
x = tetrahedron.m_pts[i][0] - m_barycenter[0];
|
||
y = tetrahedron.m_pts[i][1] - m_barycenter[1];
|
||
z = tetrahedron.m_pts[i][2] - m_barycenter[2];
|
||
covMat[0][0] += x * x;
|
||
covMat[1][1] += y * y;
|
||
covMat[2][2] += z * z;
|
||
covMat[0][1] += x * y;
|
||
covMat[0][2] += x * z;
|
||
covMat[1][2] += y * z;
|
||
}
|
||
}
|
||
double n = nTetrahedra * 4.0;
|
||
covMat[0][0] /= n;
|
||
covMat[1][1] /= n;
|
||
covMat[2][2] /= n;
|
||
covMat[0][1] /= n;
|
||
covMat[0][2] /= n;
|
||
covMat[1][2] /= n;
|
||
covMat[1][0] = covMat[0][1];
|
||
covMat[2][0] = covMat[0][2];
|
||
covMat[2][1] = covMat[1][2];
|
||
Diagonalize(covMat, m_Q, m_D);
|
||
}
|
||
void TetrahedronSet::AlignToPrincipalAxes()
|
||
{
|
||
const size_t nTetrahedra = m_tetrahedra.Size();
|
||
if (nTetrahedra == 0)
|
||
return;
|
||
double x, y, z;
|
||
for (size_t v = 0; v < nTetrahedra; ++v) {
|
||
Tetrahedron& tetrahedron = m_tetrahedra[v];
|
||
for (int32_t i = 0; i < 4; ++i) {
|
||
x = tetrahedron.m_pts[i][0] - m_barycenter[0];
|
||
y = tetrahedron.m_pts[i][1] - m_barycenter[1];
|
||
z = tetrahedron.m_pts[i][2] - m_barycenter[2];
|
||
tetrahedron.m_pts[i][0] = m_Q[0][0] * x + m_Q[1][0] * y + m_Q[2][0] * z + m_barycenter[0];
|
||
tetrahedron.m_pts[i][1] = m_Q[0][1] * x + m_Q[1][1] * y + m_Q[2][1] * z + m_barycenter[1];
|
||
tetrahedron.m_pts[i][2] = m_Q[0][2] * x + m_Q[1][2] * y + m_Q[2][2] * z + m_barycenter[2];
|
||
}
|
||
}
|
||
ComputeBB();
|
||
}
|
||
}
|