mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-12 22:01:10 +01:00
283 lines
8.8 KiB
C++
283 lines
8.8 KiB
C++
/*************************************************************************/
|
|
/* transform.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "transform.h"
|
|
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/string/print_string.h"
|
|
|
|
void Transform::invert() {
|
|
basis.transpose();
|
|
origin = basis.xform(-origin);
|
|
}
|
|
|
|
Transform Transform::inverse() const {
|
|
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
|
|
// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
|
|
Transform ret = *this;
|
|
ret.invert();
|
|
return ret;
|
|
}
|
|
|
|
void Transform::affine_invert() {
|
|
basis.invert();
|
|
origin = basis.xform(-origin);
|
|
}
|
|
|
|
Transform Transform::affine_inverse() const {
|
|
Transform ret = *this;
|
|
ret.affine_invert();
|
|
return ret;
|
|
}
|
|
|
|
Transform Transform::rotated(const Vector3 &p_axis, real_t p_angle) const {
|
|
// Equivalent to left multiplication
|
|
Basis p_basis(p_axis, p_angle);
|
|
return Transform(p_basis * basis, p_basis.xform(origin));
|
|
}
|
|
|
|
Transform Transform::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
|
|
// Equivalent to right multiplication
|
|
Basis p_basis(p_axis, p_angle);
|
|
return Transform(basis * p_basis, origin);
|
|
}
|
|
|
|
void Transform::rotate(const Vector3 &p_axis, real_t p_phi) {
|
|
*this = rotated(p_axis, p_phi);
|
|
}
|
|
|
|
void Transform::rotate_local(const Vector3 &p_axis, real_t p_phi) {
|
|
*this = rotated_local(p_axis, p_phi);
|
|
}
|
|
|
|
void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
|
|
basis.rotate(p_axis, p_phi);
|
|
}
|
|
|
|
void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND(p_eye == p_target);
|
|
ERR_FAIL_COND(p_up.length() == 0);
|
|
#endif
|
|
// Reference: MESA source code
|
|
Vector3 v_x, v_y, v_z;
|
|
|
|
/* Make rotation matrix */
|
|
|
|
/* Z vector */
|
|
v_z = p_eye - p_target;
|
|
|
|
v_z.normalize();
|
|
|
|
v_y = p_up;
|
|
|
|
v_x = v_y.cross(v_z);
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND(v_x.length() == 0);
|
|
#endif
|
|
|
|
/* Recompute Y = Z cross X */
|
|
v_y = v_z.cross(v_x);
|
|
|
|
v_x.normalize();
|
|
v_y.normalize();
|
|
|
|
basis.set(v_x, v_y, v_z);
|
|
|
|
origin = p_eye;
|
|
}
|
|
|
|
Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
|
|
Transform t = *this;
|
|
t.set_look_at(origin, p_target, p_up);
|
|
return t;
|
|
}
|
|
|
|
void Transform::scale(const Vector3 &p_scale) {
|
|
basis.scale(p_scale);
|
|
origin *= p_scale;
|
|
}
|
|
|
|
Transform Transform::scaled(const Vector3 &p_scale) const {
|
|
// Equivalent to left multiplication
|
|
return Transform(basis.scaled(p_scale), origin * p_scale);
|
|
}
|
|
|
|
Transform Transform::scaled_local(const Vector3 &p_scale) const {
|
|
// Equivalent to right multiplication
|
|
return Transform(basis.scaled_local(p_scale), origin);
|
|
}
|
|
|
|
void Transform::scale_basis(const Vector3 &p_scale) {
|
|
basis.scale(p_scale);
|
|
}
|
|
|
|
void Transform::translate_local(real_t p_tx, real_t p_ty, real_t p_tz) {
|
|
translate_local(Vector3(p_tx, p_ty, p_tz));
|
|
}
|
|
void Transform::translate_local(const Vector3 &p_translation) {
|
|
for (int i = 0; i < 3; i++) {
|
|
origin[i] += basis[i].dot(p_translation);
|
|
}
|
|
}
|
|
|
|
void Transform::translate_localr(real_t p_tx, real_t p_ty, real_t p_tz) {
|
|
translate_local(Vector3(p_tx, p_ty, p_tz));
|
|
}
|
|
void Transform::translate_localv(const Vector3 &p_translation) {
|
|
for (int i = 0; i < 3; i++) {
|
|
origin[i] += basis[i].dot(p_translation);
|
|
}
|
|
}
|
|
|
|
Transform Transform::translated(const Vector3 &p_translation) const {
|
|
// Equivalent to left multiplication
|
|
return Transform(basis, origin + p_translation);
|
|
}
|
|
|
|
Transform Transform::translated_local(const Vector3 &p_translation) const {
|
|
// Equivalent to right multiplication
|
|
return Transform(basis, origin + basis.xform(p_translation));
|
|
}
|
|
|
|
void Transform::orthonormalize() {
|
|
basis.orthonormalize();
|
|
}
|
|
|
|
Transform Transform::orthonormalized() const {
|
|
Transform _copy = *this;
|
|
_copy.orthonormalize();
|
|
return _copy;
|
|
}
|
|
|
|
void Transform::orthogonalize() {
|
|
basis.orthogonalize();
|
|
}
|
|
|
|
Transform Transform::orthogonalized() const {
|
|
Transform _copy = *this;
|
|
_copy.orthogonalize();
|
|
return _copy;
|
|
}
|
|
|
|
bool Transform::is_equal_approx(const Transform &p_transform) const {
|
|
return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin);
|
|
}
|
|
|
|
bool Transform::operator==(const Transform &p_transform) const {
|
|
return (basis == p_transform.basis && origin == p_transform.origin);
|
|
}
|
|
bool Transform::operator!=(const Transform &p_transform) const {
|
|
return (basis != p_transform.basis || origin != p_transform.origin);
|
|
}
|
|
|
|
void Transform::operator*=(const Transform &p_transform) {
|
|
origin = xform(p_transform.origin);
|
|
basis *= p_transform.basis;
|
|
}
|
|
|
|
Transform Transform::operator*(const Transform &p_transform) const {
|
|
Transform t = *this;
|
|
t *= p_transform;
|
|
return t;
|
|
}
|
|
|
|
void Transform::operator*=(const real_t p_val) {
|
|
origin *= p_val;
|
|
basis *= p_val;
|
|
}
|
|
|
|
Transform Transform::operator*(const real_t p_val) const {
|
|
Transform ret(*this);
|
|
ret *= p_val;
|
|
return ret;
|
|
}
|
|
|
|
Transform Transform::spherical_interpolate_with(const Transform &p_transform, real_t p_c) const {
|
|
/* not sure if very "efficient" but good enough? */
|
|
|
|
Transform interp;
|
|
|
|
Vector3 src_scale = basis.get_scale();
|
|
Quaternion src_rot = basis.get_rotation_quaternion();
|
|
Vector3 src_loc = origin;
|
|
|
|
Vector3 dst_scale = p_transform.basis.get_scale();
|
|
Quaternion dst_rot = p_transform.basis.get_rotation_quaternion();
|
|
Vector3 dst_loc = p_transform.origin;
|
|
|
|
interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.linear_interpolate(dst_scale, p_c));
|
|
interp.origin = src_loc.linear_interpolate(dst_loc, p_c);
|
|
|
|
return interp;
|
|
}
|
|
|
|
Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const {
|
|
/* not sure if very "efficient" but good enough? */
|
|
|
|
Vector3 src_scale = basis.get_scale();
|
|
Quaternion src_rot = basis.get_rotation_quaternion();
|
|
Vector3 src_loc = origin;
|
|
|
|
Vector3 dst_scale = p_transform.basis.get_scale();
|
|
Quaternion dst_rot = p_transform.basis.get_rotation_quaternion();
|
|
Vector3 dst_loc = p_transform.origin;
|
|
|
|
Transform interp;
|
|
interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.linear_interpolate(dst_scale, p_c));
|
|
interp.origin = src_loc.linear_interpolate(dst_loc, p_c);
|
|
|
|
return interp;
|
|
}
|
|
|
|
Transform::operator String() const {
|
|
return "[X: " + basis.get_axis(0).operator String() +
|
|
", Y: " + basis.get_axis(1).operator String() +
|
|
", Z: " + basis.get_axis(2).operator String() +
|
|
", O: " + origin.operator String() + "]";
|
|
}
|
|
|
|
Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) :
|
|
basis(p_basis),
|
|
origin(p_origin) {
|
|
}
|
|
|
|
Transform::Transform(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) {
|
|
basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz);
|
|
origin = Vector3(ox, oy, oz);
|
|
}
|
|
|
|
Transform::Transform(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) :
|
|
origin(p_origin) {
|
|
basis.set_column(0, p_x);
|
|
basis.set_column(1, p_y);
|
|
basis.set_column(2, p_z);
|
|
}
|