mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2024-12-22 11:56:49 +01:00
2277 lines
95 KiB
C++
2277 lines
95 KiB
C++
// FastNoise.cpp
|
|
//
|
|
// MIT License
|
|
//
|
|
// Copyright(c) 2017 Jordan Peck
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files(the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions :
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
//
|
|
// The developer's email is jorzixdan.me2@gzixmail.com (for great email, take
|
|
// off every 'zix'.)
|
|
//
|
|
|
|
#include "FastNoise.h"
|
|
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
#include <algorithm>
|
|
#include <random>
|
|
|
|
#include "core/version.h"
|
|
|
|
#if VERSION_MAJOR >= 4
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
|
|
#pragma GCC diagnostic ignored "-Wunused-function"
|
|
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
|
#endif
|
|
|
|
namespace fastnoise {
|
|
|
|
const FN_DECIMAL GRAD_X[] =
|
|
{
|
|
1, -1, 1, -1,
|
|
1, -1, 1, -1,
|
|
0, 0, 0, 0
|
|
};
|
|
const FN_DECIMAL GRAD_Y[] =
|
|
{
|
|
1, 1, -1, -1,
|
|
0, 0, 0, 0,
|
|
1, -1, 1, -1
|
|
};
|
|
const FN_DECIMAL GRAD_Z[] =
|
|
{
|
|
0, 0, 0, 0,
|
|
1, 1, -1, -1,
|
|
1, 1, -1, -1
|
|
};
|
|
|
|
const FN_DECIMAL GRAD_4D[] =
|
|
{
|
|
0,1,1,1,0,1,1,-1,0,1,-1,1,0,1,-1,-1,
|
|
0,-1,1,1,0,-1,1,-1,0,-1,-1,1,0,-1,-1,-1,
|
|
1,0,1,1,1,0,1,-1,1,0,-1,1,1,0,-1,-1,
|
|
-1,0,1,1,-1,0,1,-1,-1,0,-1,1,-1,0,-1,-1,
|
|
1,1,0,1,1,1,0,-1,1,-1,0,1,1,-1,0,-1,
|
|
-1,1,0,1,-1,1,0,-1,-1,-1,0,1,-1,-1,0,-1,
|
|
1,1,1,0,1,1,-1,0,1,-1,1,0,1,-1,-1,0,
|
|
-1,1,1,0,-1,1,-1,0,-1,-1,1,0,-1,-1,-1,0
|
|
};
|
|
|
|
const FN_DECIMAL VAL_LUT[] =
|
|
{
|
|
FN_DECIMAL(0.3490196078), FN_DECIMAL(0.4352941176), FN_DECIMAL(-0.4509803922), FN_DECIMAL(0.6392156863), FN_DECIMAL(0.5843137255), FN_DECIMAL(-0.1215686275), FN_DECIMAL(0.7176470588), FN_DECIMAL(-0.1058823529), FN_DECIMAL(0.3960784314), FN_DECIMAL(0.0431372549), FN_DECIMAL(-0.03529411765), FN_DECIMAL(0.3176470588), FN_DECIMAL(0.7254901961), FN_DECIMAL(0.137254902), FN_DECIMAL(0.8588235294), FN_DECIMAL(-0.8196078431),
|
|
FN_DECIMAL(-0.7960784314), FN_DECIMAL(-0.3333333333), FN_DECIMAL(-0.6705882353), FN_DECIMAL(-0.3882352941), FN_DECIMAL(0.262745098), FN_DECIMAL(0.3254901961), FN_DECIMAL(-0.6470588235), FN_DECIMAL(-0.9215686275), FN_DECIMAL(-0.5294117647), FN_DECIMAL(0.5294117647), FN_DECIMAL(-0.4666666667), FN_DECIMAL(0.8117647059), FN_DECIMAL(0.3803921569), FN_DECIMAL(0.662745098), FN_DECIMAL(0.03529411765), FN_DECIMAL(-0.6156862745),
|
|
FN_DECIMAL(-0.01960784314), FN_DECIMAL(-0.3568627451), FN_DECIMAL(-0.09019607843), FN_DECIMAL(0.7490196078), FN_DECIMAL(0.8352941176), FN_DECIMAL(-0.4039215686), FN_DECIMAL(-0.7490196078), FN_DECIMAL(0.9529411765), FN_DECIMAL(-0.0431372549), FN_DECIMAL(-0.9294117647), FN_DECIMAL(-0.6549019608), FN_DECIMAL(0.9215686275), FN_DECIMAL(-0.06666666667), FN_DECIMAL(-0.4431372549), FN_DECIMAL(0.4117647059), FN_DECIMAL(-0.4196078431),
|
|
FN_DECIMAL(-0.7176470588), FN_DECIMAL(-0.8117647059), FN_DECIMAL(-0.2549019608), FN_DECIMAL(0.4901960784), FN_DECIMAL(0.9137254902), FN_DECIMAL(0.7882352941), FN_DECIMAL(-1.0), FN_DECIMAL(-0.4745098039), FN_DECIMAL(0.7960784314), FN_DECIMAL(0.8509803922), FN_DECIMAL(-0.6784313725), FN_DECIMAL(0.4588235294), FN_DECIMAL(1.0), FN_DECIMAL(-0.1843137255), FN_DECIMAL(0.4509803922), FN_DECIMAL(0.1450980392),
|
|
FN_DECIMAL(-0.231372549), FN_DECIMAL(-0.968627451), FN_DECIMAL(-0.8588235294), FN_DECIMAL(0.4274509804), FN_DECIMAL(0.003921568627), FN_DECIMAL(-0.003921568627), FN_DECIMAL(0.2156862745), FN_DECIMAL(0.5058823529), FN_DECIMAL(0.7647058824), FN_DECIMAL(0.2078431373), FN_DECIMAL(-0.5921568627), FN_DECIMAL(0.5764705882), FN_DECIMAL(-0.1921568627), FN_DECIMAL(-0.937254902), FN_DECIMAL(0.08235294118), FN_DECIMAL(-0.08235294118),
|
|
FN_DECIMAL(0.9058823529), FN_DECIMAL(0.8274509804), FN_DECIMAL(0.02745098039), FN_DECIMAL(-0.168627451), FN_DECIMAL(-0.7803921569), FN_DECIMAL(0.1137254902), FN_DECIMAL(-0.9450980392), FN_DECIMAL(0.2), FN_DECIMAL(0.01960784314), FN_DECIMAL(0.5607843137), FN_DECIMAL(0.2705882353), FN_DECIMAL(0.4431372549), FN_DECIMAL(-0.9607843137), FN_DECIMAL(0.6156862745), FN_DECIMAL(0.9294117647), FN_DECIMAL(-0.07450980392),
|
|
FN_DECIMAL(0.3098039216), FN_DECIMAL(0.9921568627), FN_DECIMAL(-0.9137254902), FN_DECIMAL(-0.2941176471), FN_DECIMAL(-0.3411764706), FN_DECIMAL(-0.6235294118), FN_DECIMAL(-0.7647058824), FN_DECIMAL(-0.8901960784), FN_DECIMAL(0.05882352941), FN_DECIMAL(0.2392156863), FN_DECIMAL(0.7333333333), FN_DECIMAL(0.6549019608), FN_DECIMAL(0.2470588235), FN_DECIMAL(0.231372549), FN_DECIMAL(-0.3960784314), FN_DECIMAL(-0.05098039216),
|
|
FN_DECIMAL(-0.2235294118), FN_DECIMAL(-0.3725490196), FN_DECIMAL(0.6235294118), FN_DECIMAL(0.7019607843), FN_DECIMAL(-0.8274509804), FN_DECIMAL(0.4196078431), FN_DECIMAL(0.07450980392), FN_DECIMAL(0.8666666667), FN_DECIMAL(-0.537254902), FN_DECIMAL(-0.5058823529), FN_DECIMAL(-0.8039215686), FN_DECIMAL(0.09019607843), FN_DECIMAL(-0.4823529412), FN_DECIMAL(0.6705882353), FN_DECIMAL(-0.7882352941), FN_DECIMAL(0.09803921569),
|
|
FN_DECIMAL(-0.6078431373), FN_DECIMAL(0.8039215686), FN_DECIMAL(-0.6), FN_DECIMAL(-0.3254901961), FN_DECIMAL(-0.4117647059), FN_DECIMAL(-0.01176470588), FN_DECIMAL(0.4823529412), FN_DECIMAL(0.168627451), FN_DECIMAL(0.8745098039), FN_DECIMAL(-0.3647058824), FN_DECIMAL(-0.1607843137), FN_DECIMAL(0.568627451), FN_DECIMAL(-0.9921568627), FN_DECIMAL(0.9450980392), FN_DECIMAL(0.5137254902), FN_DECIMAL(0.01176470588),
|
|
FN_DECIMAL(-0.1450980392), FN_DECIMAL(-0.5529411765), FN_DECIMAL(-0.5764705882), FN_DECIMAL(-0.1137254902), FN_DECIMAL(0.5215686275), FN_DECIMAL(0.1607843137), FN_DECIMAL(0.3725490196), FN_DECIMAL(-0.2), FN_DECIMAL(-0.7254901961), FN_DECIMAL(0.631372549), FN_DECIMAL(0.7098039216), FN_DECIMAL(-0.568627451), FN_DECIMAL(0.1294117647), FN_DECIMAL(-0.3098039216), FN_DECIMAL(0.7411764706), FN_DECIMAL(-0.8509803922),
|
|
FN_DECIMAL(0.2549019608), FN_DECIMAL(-0.6392156863), FN_DECIMAL(-0.5607843137), FN_DECIMAL(-0.3176470588), FN_DECIMAL(0.937254902), FN_DECIMAL(0.9843137255), FN_DECIMAL(0.5921568627), FN_DECIMAL(0.6941176471), FN_DECIMAL(0.2862745098), FN_DECIMAL(-0.5215686275), FN_DECIMAL(0.1764705882), FN_DECIMAL(0.537254902), FN_DECIMAL(-0.4901960784), FN_DECIMAL(-0.4588235294), FN_DECIMAL(-0.2078431373), FN_DECIMAL(-0.2156862745),
|
|
FN_DECIMAL(0.7725490196), FN_DECIMAL(0.3647058824), FN_DECIMAL(-0.2392156863), FN_DECIMAL(0.2784313725), FN_DECIMAL(-0.8823529412), FN_DECIMAL(0.8980392157), FN_DECIMAL(0.1215686275), FN_DECIMAL(0.1058823529), FN_DECIMAL(-0.8745098039), FN_DECIMAL(-0.9843137255), FN_DECIMAL(-0.7019607843), FN_DECIMAL(0.9607843137), FN_DECIMAL(0.2941176471), FN_DECIMAL(0.3411764706), FN_DECIMAL(0.1529411765), FN_DECIMAL(0.06666666667),
|
|
FN_DECIMAL(-0.9764705882), FN_DECIMAL(0.3019607843), FN_DECIMAL(0.6470588235), FN_DECIMAL(-0.5843137255), FN_DECIMAL(0.05098039216), FN_DECIMAL(-0.5137254902), FN_DECIMAL(-0.137254902), FN_DECIMAL(0.3882352941), FN_DECIMAL(-0.262745098), FN_DECIMAL(-0.3019607843), FN_DECIMAL(-0.1764705882), FN_DECIMAL(-0.7568627451), FN_DECIMAL(0.1843137255), FN_DECIMAL(-0.5450980392), FN_DECIMAL(-0.4980392157), FN_DECIMAL(-0.2784313725),
|
|
FN_DECIMAL(-0.9529411765), FN_DECIMAL(-0.09803921569), FN_DECIMAL(0.8901960784), FN_DECIMAL(-0.2862745098), FN_DECIMAL(-0.3803921569), FN_DECIMAL(0.5529411765), FN_DECIMAL(0.7803921569), FN_DECIMAL(-0.8352941176), FN_DECIMAL(0.6862745098), FN_DECIMAL(0.7568627451), FN_DECIMAL(0.4980392157), FN_DECIMAL(-0.6862745098), FN_DECIMAL(-0.8980392157), FN_DECIMAL(-0.7725490196), FN_DECIMAL(-0.7098039216), FN_DECIMAL(-0.2470588235),
|
|
FN_DECIMAL(-0.9058823529), FN_DECIMAL(0.9764705882), FN_DECIMAL(0.1921568627), FN_DECIMAL(0.8431372549), FN_DECIMAL(-0.05882352941), FN_DECIMAL(0.3568627451), FN_DECIMAL(0.6078431373), FN_DECIMAL(0.5450980392), FN_DECIMAL(0.4039215686), FN_DECIMAL(-0.7333333333), FN_DECIMAL(-0.4274509804), FN_DECIMAL(0.6), FN_DECIMAL(0.6784313725), FN_DECIMAL(-0.631372549), FN_DECIMAL(-0.02745098039), FN_DECIMAL(-0.1294117647),
|
|
FN_DECIMAL(0.3333333333), FN_DECIMAL(-0.8431372549), FN_DECIMAL(0.2235294118), FN_DECIMAL(-0.3490196078), FN_DECIMAL(-0.6941176471), FN_DECIMAL(0.8823529412), FN_DECIMAL(0.4745098039), FN_DECIMAL(0.4666666667), FN_DECIMAL(-0.7411764706), FN_DECIMAL(-0.2705882353), FN_DECIMAL(0.968627451), FN_DECIMAL(0.8196078431), FN_DECIMAL(-0.662745098), FN_DECIMAL(-0.4352941176), FN_DECIMAL(-0.8666666667), FN_DECIMAL(-0.1529411765),
|
|
};
|
|
|
|
const FN_DECIMAL CELL_2D_X[] =
|
|
{
|
|
FN_DECIMAL(-0.6440658039), FN_DECIMAL(-0.08028078721), FN_DECIMAL(0.9983546168), FN_DECIMAL(0.9869492062), FN_DECIMAL(0.9284746418), FN_DECIMAL(0.6051097552), FN_DECIMAL(-0.794167404), FN_DECIMAL(-0.3488667991), FN_DECIMAL(-0.943136526), FN_DECIMAL(-0.9968171318), FN_DECIMAL(0.8740961579), FN_DECIMAL(0.1421139764), FN_DECIMAL(0.4282553608), FN_DECIMAL(-0.9986665833), FN_DECIMAL(0.9996760121), FN_DECIMAL(-0.06248383632),
|
|
FN_DECIMAL(0.7120139305), FN_DECIMAL(0.8917660409), FN_DECIMAL(0.1094842955), FN_DECIMAL(-0.8730880804), FN_DECIMAL(0.2594811489), FN_DECIMAL(-0.6690063346), FN_DECIMAL(-0.9996834972), FN_DECIMAL(-0.8803608671), FN_DECIMAL(-0.8166554937), FN_DECIMAL(0.8955599676), FN_DECIMAL(-0.9398321388), FN_DECIMAL(0.07615451399), FN_DECIMAL(-0.7147270565), FN_DECIMAL(0.8707354457), FN_DECIMAL(-0.9580008579), FN_DECIMAL(0.4905965632),
|
|
FN_DECIMAL(0.786775944), FN_DECIMAL(0.1079711577), FN_DECIMAL(0.2686638979), FN_DECIMAL(0.6113487322), FN_DECIMAL(-0.530770584), FN_DECIMAL(-0.7837268286), FN_DECIMAL(-0.8558691039), FN_DECIMAL(-0.5726093896), FN_DECIMAL(-0.9830740914), FN_DECIMAL(0.7087766359), FN_DECIMAL(0.6807027153), FN_DECIMAL(-0.08864708788), FN_DECIMAL(0.6704485923), FN_DECIMAL(-0.1350735482), FN_DECIMAL(-0.9381333003), FN_DECIMAL(0.9756655376),
|
|
FN_DECIMAL(0.4231433671), FN_DECIMAL(-0.4959787385), FN_DECIMAL(0.1005554325), FN_DECIMAL(-0.7645857281), FN_DECIMAL(-0.5859053796), FN_DECIMAL(-0.9751154306), FN_DECIMAL(-0.6972258572), FN_DECIMAL(0.7907012002), FN_DECIMAL(-0.9109899213), FN_DECIMAL(-0.9584307894), FN_DECIMAL(-0.8269529333), FN_DECIMAL(0.2608264719), FN_DECIMAL(-0.7773760119), FN_DECIMAL(0.7606456974), FN_DECIMAL(-0.8961083758), FN_DECIMAL(-0.9838134719),
|
|
FN_DECIMAL(0.7338893576), FN_DECIMAL(0.2161226729), FN_DECIMAL(0.673509891), FN_DECIMAL(-0.5512056873), FN_DECIMAL(0.6899744332), FN_DECIMAL(0.868004831), FN_DECIMAL(0.5897430311), FN_DECIMAL(-0.8950444221), FN_DECIMAL(-0.3595752773), FN_DECIMAL(0.8209486981), FN_DECIMAL(-0.2912360132), FN_DECIMAL(-0.9965011374), FN_DECIMAL(0.9766994634), FN_DECIMAL(0.738790822), FN_DECIMAL(-0.4730947722), FN_DECIMAL(0.8946479441),
|
|
FN_DECIMAL(-0.6943628971), FN_DECIMAL(-0.6620468182), FN_DECIMAL(-0.0887255502), FN_DECIMAL(-0.7512250855), FN_DECIMAL(-0.5322986898), FN_DECIMAL(0.5226295385), FN_DECIMAL(0.2296318375), FN_DECIMAL(0.7915307344), FN_DECIMAL(-0.2756485999), FN_DECIMAL(-0.6900234522), FN_DECIMAL(0.07090588086), FN_DECIMAL(0.5981278485), FN_DECIMAL(0.3033429312), FN_DECIMAL(-0.7253142797), FN_DECIMAL(-0.9855874307), FN_DECIMAL(-0.1761843396),
|
|
FN_DECIMAL(-0.6438468325), FN_DECIMAL(-0.9956136595), FN_DECIMAL(0.8541580762), FN_DECIMAL(-0.9999807666), FN_DECIMAL(-0.02152416253), FN_DECIMAL(-0.8705983095), FN_DECIMAL(-0.1197138014), FN_DECIMAL(-0.992107781), FN_DECIMAL(-0.9091181546), FN_DECIMAL(0.788610536), FN_DECIMAL(-0.994636402), FN_DECIMAL(0.4211256853), FN_DECIMAL(0.3110430857), FN_DECIMAL(-0.4031127839), FN_DECIMAL(0.7610684239), FN_DECIMAL(0.7685674467),
|
|
FN_DECIMAL(0.152271555), FN_DECIMAL(-0.9364648723), FN_DECIMAL(0.1681333739), FN_DECIMAL(-0.3567427907), FN_DECIMAL(-0.418445483), FN_DECIMAL(-0.98774778), FN_DECIMAL(0.8705250765), FN_DECIMAL(-0.8911701067), FN_DECIMAL(-0.7315350966), FN_DECIMAL(0.6030885658), FN_DECIMAL(-0.4149130821), FN_DECIMAL(0.7585339481), FN_DECIMAL(0.6963196535), FN_DECIMAL(0.8332685012), FN_DECIMAL(-0.8086815232), FN_DECIMAL(0.7518116724),
|
|
FN_DECIMAL(-0.3490535894), FN_DECIMAL(0.6972110903), FN_DECIMAL(-0.8795676928), FN_DECIMAL(-0.6442331882), FN_DECIMAL(0.6610236811), FN_DECIMAL(-0.9853565782), FN_DECIMAL(-0.590338458), FN_DECIMAL(0.09843602117), FN_DECIMAL(0.5646534882), FN_DECIMAL(-0.6023259233), FN_DECIMAL(-0.3539248861), FN_DECIMAL(0.5132728656), FN_DECIMAL(0.9380385118), FN_DECIMAL(-0.7599270056), FN_DECIMAL(-0.7425936564), FN_DECIMAL(-0.6679610562),
|
|
FN_DECIMAL(-0.3018497816), FN_DECIMAL(0.814478266), FN_DECIMAL(0.03777430269), FN_DECIMAL(-0.7514235086), FN_DECIMAL(0.9662556939), FN_DECIMAL(-0.4720194901), FN_DECIMAL(-0.435054126), FN_DECIMAL(0.7091901235), FN_DECIMAL(0.929379209), FN_DECIMAL(0.9997434357), FN_DECIMAL(0.8306320299), FN_DECIMAL(-0.9434019629), FN_DECIMAL(-0.133133759), FN_DECIMAL(0.5048413216), FN_DECIMAL(0.3711995273), FN_DECIMAL(0.98552091),
|
|
FN_DECIMAL(0.7401857005), FN_DECIMAL(-0.9999981398), FN_DECIMAL(-0.2144033253), FN_DECIMAL(0.4808624681), FN_DECIMAL(-0.413835885), FN_DECIMAL(0.644229305), FN_DECIMAL(0.9626648696), FN_DECIMAL(0.1833665934), FN_DECIMAL(0.5794129), FN_DECIMAL(0.01404446873), FN_DECIMAL(0.4388494993), FN_DECIMAL(0.5213612322), FN_DECIMAL(-0.5281609948), FN_DECIMAL(-0.9745306846), FN_DECIMAL(-0.9904373013), FN_DECIMAL(0.9100232252),
|
|
FN_DECIMAL(-0.9914057719), FN_DECIMAL(0.7892627765), FN_DECIMAL(0.3364421659), FN_DECIMAL(-0.9416099764), FN_DECIMAL(0.7802732656), FN_DECIMAL(0.886302871), FN_DECIMAL(0.6524471291), FN_DECIMAL(0.5762186726), FN_DECIMAL(-0.08987644664), FN_DECIMAL(-0.2177026782), FN_DECIMAL(-0.9720345052), FN_DECIMAL(-0.05722538858), FN_DECIMAL(0.8105983127), FN_DECIMAL(0.3410261032), FN_DECIMAL(0.6452309645), FN_DECIMAL(-0.7810612152),
|
|
FN_DECIMAL(0.9989395718), FN_DECIMAL(-0.808247815), FN_DECIMAL(0.6370177929), FN_DECIMAL(0.5844658772), FN_DECIMAL(0.2054070861), FN_DECIMAL(0.055960522), FN_DECIMAL(-0.995827561), FN_DECIMAL(0.893409165), FN_DECIMAL(-0.931516824), FN_DECIMAL(0.328969469), FN_DECIMAL(-0.3193837488), FN_DECIMAL(0.7314755657), FN_DECIMAL(-0.7913517714), FN_DECIMAL(-0.2204109786), FN_DECIMAL(0.9955900414), FN_DECIMAL(-0.7112353139),
|
|
FN_DECIMAL(-0.7935008741), FN_DECIMAL(-0.9961918204), FN_DECIMAL(-0.9714163995), FN_DECIMAL(-0.9566188669), FN_DECIMAL(0.2748495632), FN_DECIMAL(-0.4681743221), FN_DECIMAL(-0.9614449642), FN_DECIMAL(0.585194072), FN_DECIMAL(0.4532946061), FN_DECIMAL(-0.9916113176), FN_DECIMAL(0.942479587), FN_DECIMAL(-0.9813704753), FN_DECIMAL(-0.6538429571), FN_DECIMAL(0.2923335053), FN_DECIMAL(-0.2246660704), FN_DECIMAL(-0.1800781949),
|
|
FN_DECIMAL(-0.9581216256), FN_DECIMAL(0.552215082), FN_DECIMAL(-0.9296791922), FN_DECIMAL(0.643183699), FN_DECIMAL(0.9997325981), FN_DECIMAL(-0.4606920354), FN_DECIMAL(-0.2148721265), FN_DECIMAL(0.3482070809), FN_DECIMAL(0.3075517813), FN_DECIMAL(0.6274756393), FN_DECIMAL(0.8910881765), FN_DECIMAL(-0.6397771309), FN_DECIMAL(-0.4479080125), FN_DECIMAL(-0.5247665011), FN_DECIMAL(-0.8386507094), FN_DECIMAL(0.3901291416),
|
|
FN_DECIMAL(0.1458336921), FN_DECIMAL(0.01624613149), FN_DECIMAL(-0.8273199879), FN_DECIMAL(0.5611100679), FN_DECIMAL(-0.8380219841), FN_DECIMAL(-0.9856122234), FN_DECIMAL(-0.861398618), FN_DECIMAL(0.6398413916), FN_DECIMAL(0.2694510795), FN_DECIMAL(0.4327334514), FN_DECIMAL(-0.9960265354), FN_DECIMAL(-0.939570655), FN_DECIMAL(-0.8846996446), FN_DECIMAL(0.7642113189), FN_DECIMAL(-0.7002080528), FN_DECIMAL(0.664508256),
|
|
};
|
|
const FN_DECIMAL CELL_2D_Y[] =
|
|
{
|
|
FN_DECIMAL(0.7649700911), FN_DECIMAL(0.9967722885), FN_DECIMAL(0.05734160033), FN_DECIMAL(-0.1610318741), FN_DECIMAL(0.371395799), FN_DECIMAL(-0.7961420628), FN_DECIMAL(0.6076990492), FN_DECIMAL(-0.9371723195), FN_DECIMAL(0.3324056156), FN_DECIMAL(0.07972205329), FN_DECIMAL(-0.4857529277), FN_DECIMAL(-0.9898503007), FN_DECIMAL(0.9036577593), FN_DECIMAL(0.05162417479), FN_DECIMAL(-0.02545330525), FN_DECIMAL(-0.998045976),
|
|
FN_DECIMAL(-0.7021653386), FN_DECIMAL(-0.4524967717), FN_DECIMAL(-0.9939885256), FN_DECIMAL(-0.4875625128), FN_DECIMAL(-0.9657481729), FN_DECIMAL(-0.7432567015), FN_DECIMAL(0.02515761212), FN_DECIMAL(0.4743044842), FN_DECIMAL(0.5771254669), FN_DECIMAL(0.4449408324), FN_DECIMAL(0.3416365773), FN_DECIMAL(0.9970960285), FN_DECIMAL(0.6994034849), FN_DECIMAL(0.4917517499), FN_DECIMAL(0.286765333), FN_DECIMAL(0.8713868327),
|
|
FN_DECIMAL(0.6172387009), FN_DECIMAL(0.9941540269), FN_DECIMAL(0.9632339851), FN_DECIMAL(-0.7913613129), FN_DECIMAL(0.847515538), FN_DECIMAL(0.6211056739), FN_DECIMAL(0.5171924952), FN_DECIMAL(-0.8198283277), FN_DECIMAL(-0.1832084353), FN_DECIMAL(0.7054329737), FN_DECIMAL(0.7325597678), FN_DECIMAL(0.9960630973), FN_DECIMAL(0.7419559859), FN_DECIMAL(0.9908355749), FN_DECIMAL(-0.346274329), FN_DECIMAL(0.2192641299),
|
|
FN_DECIMAL(-0.9060627411), FN_DECIMAL(-0.8683346653), FN_DECIMAL(0.9949314574), FN_DECIMAL(-0.6445220433), FN_DECIMAL(-0.8103794704), FN_DECIMAL(-0.2216977607), FN_DECIMAL(0.7168515217), FN_DECIMAL(0.612202264), FN_DECIMAL(-0.412428616), FN_DECIMAL(0.285325116), FN_DECIMAL(0.56227115), FN_DECIMAL(-0.9653857009), FN_DECIMAL(-0.6290361962), FN_DECIMAL(0.6491672535), FN_DECIMAL(0.443835306), FN_DECIMAL(-0.1791955706),
|
|
FN_DECIMAL(-0.6792690269), FN_DECIMAL(-0.9763662173), FN_DECIMAL(0.7391782104), FN_DECIMAL(0.8343693968), FN_DECIMAL(0.7238337389), FN_DECIMAL(0.4965557504), FN_DECIMAL(0.8075909592), FN_DECIMAL(-0.4459769977), FN_DECIMAL(-0.9331160806), FN_DECIMAL(-0.5710019572), FN_DECIMAL(0.9566512346), FN_DECIMAL(-0.08357920318), FN_DECIMAL(0.2146116448), FN_DECIMAL(-0.6739348049), FN_DECIMAL(0.8810115417), FN_DECIMAL(0.4467718167),
|
|
FN_DECIMAL(-0.7196250184), FN_DECIMAL(-0.749462481), FN_DECIMAL(0.9960561112), FN_DECIMAL(0.6600461127), FN_DECIMAL(-0.8465566164), FN_DECIMAL(-0.8525598897), FN_DECIMAL(-0.9732775654), FN_DECIMAL(0.6111293616), FN_DECIMAL(-0.9612584717), FN_DECIMAL(-0.7237870097), FN_DECIMAL(-0.9974830104), FN_DECIMAL(-0.8014006968), FN_DECIMAL(0.9528814544), FN_DECIMAL(-0.6884178931), FN_DECIMAL(-0.1691668301), FN_DECIMAL(0.9843571905),
|
|
FN_DECIMAL(0.7651544003), FN_DECIMAL(-0.09355982605), FN_DECIMAL(-0.5200134429), FN_DECIMAL(-0.006202125807), FN_DECIMAL(-0.9997683284), FN_DECIMAL(0.4919944954), FN_DECIMAL(-0.9928084436), FN_DECIMAL(-0.1253880012), FN_DECIMAL(-0.4165383308), FN_DECIMAL(-0.6148930171), FN_DECIMAL(-0.1034332049), FN_DECIMAL(-0.9070022917), FN_DECIMAL(-0.9503958117), FN_DECIMAL(0.9151503065), FN_DECIMAL(-0.6486716073), FN_DECIMAL(0.6397687707),
|
|
FN_DECIMAL(-0.9883386937), FN_DECIMAL(0.3507613761), FN_DECIMAL(0.9857642561), FN_DECIMAL(-0.9342026446), FN_DECIMAL(-0.9082419159), FN_DECIMAL(0.1560587169), FN_DECIMAL(0.4921240607), FN_DECIMAL(-0.453669308), FN_DECIMAL(0.6818037859), FN_DECIMAL(0.7976742329), FN_DECIMAL(0.9098610522), FN_DECIMAL(0.651633524), FN_DECIMAL(0.7177318024), FN_DECIMAL(-0.5528685241), FN_DECIMAL(0.5882467118), FN_DECIMAL(0.6593778956),
|
|
FN_DECIMAL(0.9371027648), FN_DECIMAL(-0.7168658839), FN_DECIMAL(-0.4757737632), FN_DECIMAL(0.7648291307), FN_DECIMAL(0.7503650398), FN_DECIMAL(0.1705063456), FN_DECIMAL(-0.8071558121), FN_DECIMAL(-0.9951433815), FN_DECIMAL(-0.8253280792), FN_DECIMAL(-0.7982502628), FN_DECIMAL(0.9352738503), FN_DECIMAL(0.8582254747), FN_DECIMAL(-0.3465310238), FN_DECIMAL(0.65000842), FN_DECIMAL(-0.6697422351), FN_DECIMAL(0.7441962291),
|
|
FN_DECIMAL(-0.9533555), FN_DECIMAL(0.5801940659), FN_DECIMAL(-0.9992862963), FN_DECIMAL(-0.659820211), FN_DECIMAL(0.2575848092), FN_DECIMAL(0.881588113), FN_DECIMAL(-0.9004043022), FN_DECIMAL(-0.7050172826), FN_DECIMAL(0.369126382), FN_DECIMAL(-0.02265088836), FN_DECIMAL(0.5568217228), FN_DECIMAL(-0.3316515286), FN_DECIMAL(0.991098079), FN_DECIMAL(-0.863212164), FN_DECIMAL(-0.9285531277), FN_DECIMAL(0.1695539323),
|
|
FN_DECIMAL(-0.672402505), FN_DECIMAL(-0.001928841934), FN_DECIMAL(0.9767452145), FN_DECIMAL(-0.8767960349), FN_DECIMAL(0.9103515037), FN_DECIMAL(-0.7648324016), FN_DECIMAL(0.2706960452), FN_DECIMAL(-0.9830446035), FN_DECIMAL(0.8150341657), FN_DECIMAL(-0.9999013716), FN_DECIMAL(-0.8985605806), FN_DECIMAL(0.8533360801), FN_DECIMAL(0.8491442537), FN_DECIMAL(-0.2242541966), FN_DECIMAL(-0.1379635899), FN_DECIMAL(-0.4145572694),
|
|
FN_DECIMAL(0.1308227633), FN_DECIMAL(0.6140555916), FN_DECIMAL(0.9417041303), FN_DECIMAL(-0.336705587), FN_DECIMAL(-0.6254387508), FN_DECIMAL(0.4631060578), FN_DECIMAL(-0.7578342456), FN_DECIMAL(-0.8172955655), FN_DECIMAL(-0.9959529228), FN_DECIMAL(-0.9760151351), FN_DECIMAL(0.2348380732), FN_DECIMAL(-0.9983612848), FN_DECIMAL(0.5856025746), FN_DECIMAL(-0.9400538266), FN_DECIMAL(-0.7639875669), FN_DECIMAL(0.6244544645),
|
|
FN_DECIMAL(0.04604054566), FN_DECIMAL(0.5888424828), FN_DECIMAL(0.7708490978), FN_DECIMAL(-0.8114182882), FN_DECIMAL(0.9786766212), FN_DECIMAL(-0.9984329822), FN_DECIMAL(0.09125496582), FN_DECIMAL(-0.4492438803), FN_DECIMAL(-0.3636982357), FN_DECIMAL(0.9443405575), FN_DECIMAL(-0.9476254645), FN_DECIMAL(-0.6818676535), FN_DECIMAL(-0.6113610831), FN_DECIMAL(0.9754070948), FN_DECIMAL(-0.0938108173), FN_DECIMAL(-0.7029540015),
|
|
FN_DECIMAL(-0.6085691109), FN_DECIMAL(-0.08718862881), FN_DECIMAL(-0.237381926), FN_DECIMAL(0.2913423132), FN_DECIMAL(0.9614872426), FN_DECIMAL(0.8836361266), FN_DECIMAL(-0.2749974196), FN_DECIMAL(-0.8108932717), FN_DECIMAL(-0.8913607575), FN_DECIMAL(0.129255541), FN_DECIMAL(-0.3342637104), FN_DECIMAL(-0.1921249337), FN_DECIMAL(-0.7566302845), FN_DECIMAL(-0.9563164339), FN_DECIMAL(-0.9744358146), FN_DECIMAL(0.9836522982),
|
|
FN_DECIMAL(-0.2863615732), FN_DECIMAL(0.8337016872), FN_DECIMAL(0.3683701937), FN_DECIMAL(0.7657119102), FN_DECIMAL(-0.02312427772), FN_DECIMAL(0.8875600535), FN_DECIMAL(0.976642191), FN_DECIMAL(0.9374176384), FN_DECIMAL(0.9515313457), FN_DECIMAL(-0.7786361937), FN_DECIMAL(-0.4538302125), FN_DECIMAL(-0.7685604874), FN_DECIMAL(-0.8940796454), FN_DECIMAL(-0.8512462154), FN_DECIMAL(0.5446696133), FN_DECIMAL(0.9207601495),
|
|
FN_DECIMAL(-0.9893091197), FN_DECIMAL(-0.9998680229), FN_DECIMAL(0.5617309299), FN_DECIMAL(-0.8277411985), FN_DECIMAL(0.545636467), FN_DECIMAL(0.1690223212), FN_DECIMAL(-0.5079295433), FN_DECIMAL(0.7685069899), FN_DECIMAL(-0.9630140787), FN_DECIMAL(0.9015219132), FN_DECIMAL(0.08905695279), FN_DECIMAL(-0.3423550559), FN_DECIMAL(-0.4661614943), FN_DECIMAL(-0.6449659371), FN_DECIMAL(0.7139388509), FN_DECIMAL(0.7472809229),
|
|
};
|
|
const FN_DECIMAL CELL_3D_X[] =
|
|
{
|
|
FN_DECIMAL(0.3752498686), FN_DECIMAL(0.687188096), FN_DECIMAL(0.2248135212), FN_DECIMAL(0.6692006647), FN_DECIMAL(-0.4376476931), FN_DECIMAL(0.6139972552), FN_DECIMAL(0.9494563929), FN_DECIMAL(0.8065108882), FN_DECIMAL(-0.2218812853), FN_DECIMAL(0.8484661167), FN_DECIMAL(0.5551817596), FN_DECIMAL(0.2133903499), FN_DECIMAL(0.5195126593), FN_DECIMAL(-0.6440141975), FN_DECIMAL(-0.5192897331), FN_DECIMAL(-0.3697654077),
|
|
FN_DECIMAL(-0.07927779647), FN_DECIMAL(0.4187757321), FN_DECIMAL(-0.750078731), FN_DECIMAL(0.6579554632), FN_DECIMAL(-0.6859803838), FN_DECIMAL(-0.6878407087), FN_DECIMAL(0.9490848347), FN_DECIMAL(0.5795829433), FN_DECIMAL(-0.5325976529), FN_DECIMAL(-0.1363699466), FN_DECIMAL(0.417665879), FN_DECIMAL(-0.9108236468), FN_DECIMAL(0.4438605427), FN_DECIMAL(0.819294887), FN_DECIMAL(-0.4033873915), FN_DECIMAL(-0.2817317705),
|
|
FN_DECIMAL(0.3969665622), FN_DECIMAL(0.5323450134), FN_DECIMAL(-0.6833017297), FN_DECIMAL(0.3881436661), FN_DECIMAL(-0.7119144767), FN_DECIMAL(-0.2306979838), FN_DECIMAL(-0.9398873022), FN_DECIMAL(0.1701906676), FN_DECIMAL(-0.4261839496), FN_DECIMAL(-0.003712295499), FN_DECIMAL(-0.734675004), FN_DECIMAL(-0.3195046015), FN_DECIMAL(0.7345307424), FN_DECIMAL(0.9766246496), FN_DECIMAL(-0.02003735175), FN_DECIMAL(-0.4824156342),
|
|
FN_DECIMAL(0.4245892007), FN_DECIMAL(0.9072427669), FN_DECIMAL(0.593346808), FN_DECIMAL(-0.8911762541), FN_DECIMAL(-0.7657571834), FN_DECIMAL(-0.5268198896), FN_DECIMAL(-0.8801903279), FN_DECIMAL(-0.6296409617), FN_DECIMAL(-0.09492481344), FN_DECIMAL(-0.4920470525), FN_DECIMAL(0.7307666154), FN_DECIMAL(-0.2514540636), FN_DECIMAL(-0.3356210347), FN_DECIMAL(-0.3522787894), FN_DECIMAL(0.87847885), FN_DECIMAL(-0.7424096346),
|
|
FN_DECIMAL(0.5757585274), FN_DECIMAL(0.4519299338), FN_DECIMAL(0.6420368628), FN_DECIMAL(-0.1128478447), FN_DECIMAL(0.499874883), FN_DECIMAL(0.5291681739), FN_DECIMAL(-0.5098837195), FN_DECIMAL(0.5639583502), FN_DECIMAL(-0.8456386526), FN_DECIMAL(-0.9657134875), FN_DECIMAL(-0.576437342), FN_DECIMAL(-0.5666013014), FN_DECIMAL(0.5667702405), FN_DECIMAL(-0.481316582), FN_DECIMAL(0.7313389916), FN_DECIMAL(-0.3805628566),
|
|
FN_DECIMAL(-0.6512675909), FN_DECIMAL(-0.2787156951), FN_DECIMAL(0.8648059114), FN_DECIMAL(-0.9730216276), FN_DECIMAL(-0.8335820906), FN_DECIMAL(0.2673159641), FN_DECIMAL(0.231150148), FN_DECIMAL(0.01286214638), FN_DECIMAL(0.6774953261), FN_DECIMAL(0.6542885718), FN_DECIMAL(-0.02545450161), FN_DECIMAL(0.2101238586), FN_DECIMAL(-0.5572105885), FN_DECIMAL(0.813705672), FN_DECIMAL(-0.7546026951), FN_DECIMAL(-0.2502500006),
|
|
FN_DECIMAL(-0.9979289381), FN_DECIMAL(0.7024037039), FN_DECIMAL(0.08990874624), FN_DECIMAL(0.8170812432), FN_DECIMAL(0.4226980265), FN_DECIMAL(-0.2442153475), FN_DECIMAL(-0.9183326731), FN_DECIMAL(0.6068222411), FN_DECIMAL(0.818676691), FN_DECIMAL(-0.7236735282), FN_DECIMAL(-0.5383903295), FN_DECIMAL(-0.6269337242), FN_DECIMAL(-0.0939331121), FN_DECIMAL(0.9203878539), FN_DECIMAL(-0.7256396824), FN_DECIMAL(0.6292431149),
|
|
FN_DECIMAL(0.4234156978), FN_DECIMAL(0.006685688024), FN_DECIMAL(-0.2598694113), FN_DECIMAL(0.6408036421), FN_DECIMAL(0.05899871622), FN_DECIMAL(0.7090281418), FN_DECIMAL(-0.5905222072), FN_DECIMAL(0.3128214264), FN_DECIMAL(-0.691925826), FN_DECIMAL(0.3634019349), FN_DECIMAL(-0.6772511147), FN_DECIMAL(-0.3204583896), FN_DECIMAL(-0.3906740409), FN_DECIMAL(-0.3342190395), FN_DECIMAL(-0.517779592), FN_DECIMAL(-0.6817711267),
|
|
FN_DECIMAL(0.6422383105), FN_DECIMAL(0.4388482478), FN_DECIMAL(0.2968562611), FN_DECIMAL(-0.2019778353), FN_DECIMAL(0.6014865048), FN_DECIMAL(0.9519280722), FN_DECIMAL(0.3398889569), FN_DECIMAL(0.8179709354), FN_DECIMAL(0.2365522154), FN_DECIMAL(0.3262175096), FN_DECIMAL(-0.8060715954), FN_DECIMAL(-0.2068642503), FN_DECIMAL(0.6208057279), FN_DECIMAL(-0.5274282502), FN_DECIMAL(-0.3722334928), FN_DECIMAL(-0.8923412971),
|
|
FN_DECIMAL(0.5341834201), FN_DECIMAL(-0.3663701513), FN_DECIMAL(-0.6114600319), FN_DECIMAL(0.5026307556), FN_DECIMAL(0.8396151729), FN_DECIMAL(0.9245042467), FN_DECIMAL(-0.7994843957), FN_DECIMAL(-0.5357200589), FN_DECIMAL(-0.6283359739), FN_DECIMAL(-0.61351886), FN_DECIMAL(-0.875632008), FN_DECIMAL(-0.5278879423), FN_DECIMAL(0.9087491985), FN_DECIMAL(-0.03500215466), FN_DECIMAL(-0.261365798), FN_DECIMAL(-0.579523541),
|
|
FN_DECIMAL(-0.3765052689), FN_DECIMAL(-0.74398252), FN_DECIMAL(0.4257318052), FN_DECIMAL(-0.1214508921), FN_DECIMAL(0.8561809753), FN_DECIMAL(0.6802835104), FN_DECIMAL(-0.5452131039), FN_DECIMAL(-0.1997156478), FN_DECIMAL(0.4562348357), FN_DECIMAL(-0.811704301), FN_DECIMAL(0.67793962), FN_DECIMAL(-0.9237819106), FN_DECIMAL(0.6973511259), FN_DECIMAL(-0.5189506), FN_DECIMAL(0.5517320032), FN_DECIMAL(-0.396710831),
|
|
FN_DECIMAL(0.5493762815), FN_DECIMAL(-0.2507853002), FN_DECIMAL(0.4788634005), FN_DECIMAL(0.387333516), FN_DECIMAL(-0.2176515694), FN_DECIMAL(0.6749832419), FN_DECIMAL(0.2148283022), FN_DECIMAL(-0.7521815872), FN_DECIMAL(0.4697000159), FN_DECIMAL(0.7890593699), FN_DECIMAL(-0.7606162952), FN_DECIMAL(0.01083397843), FN_DECIMAL(0.5254091908), FN_DECIMAL(-0.6748025877), FN_DECIMAL(0.751091524), FN_DECIMAL(0.05259056135),
|
|
FN_DECIMAL(0.01889481232), FN_DECIMAL(-0.6037423727), FN_DECIMAL(-0.6542965129), FN_DECIMAL(0.08873301081), FN_DECIMAL(-0.6191345671), FN_DECIMAL(0.4331858488), FN_DECIMAL(-0.3858351946), FN_DECIMAL(-0.1429059747), FN_DECIMAL(0.4118221036), FN_DECIMAL(-0.6247153214), FN_DECIMAL(-0.611423014), FN_DECIMAL(0.5542939606), FN_DECIMAL(-0.9432768808), FN_DECIMAL(-0.4567870451), FN_DECIMAL(-0.7349133547), FN_DECIMAL(0.399304489),
|
|
FN_DECIMAL(-0.7474927672), FN_DECIMAL(0.02589419753), FN_DECIMAL(0.783915821), FN_DECIMAL(0.6138668752), FN_DECIMAL(0.4276376047), FN_DECIMAL(-0.4347886353), FN_DECIMAL(0.02947841302), FN_DECIMAL(-0.833742746), FN_DECIMAL(0.3817221742), FN_DECIMAL(-0.8743368359), FN_DECIMAL(-0.3823443796), FN_DECIMAL(-0.6829243811), FN_DECIMAL(-0.3681903049), FN_DECIMAL(-0.367626833), FN_DECIMAL(-0.434583373), FN_DECIMAL(0.235891995),
|
|
FN_DECIMAL(-0.6874880269), FN_DECIMAL(-0.5115661773), FN_DECIMAL(-0.5534962601), FN_DECIMAL(0.5632777056), FN_DECIMAL(0.686191532), FN_DECIMAL(-0.05095871588), FN_DECIMAL(-0.06865785057), FN_DECIMAL(-0.5975288531), FN_DECIMAL(-0.6429790056), FN_DECIMAL(-0.3729361548), FN_DECIMAL(0.2237917666), FN_DECIMAL(0.6046773225), FN_DECIMAL(-0.5041542295), FN_DECIMAL(-0.03972191174), FN_DECIMAL(0.7028828406), FN_DECIMAL(-0.5560856498),
|
|
FN_DECIMAL(0.5898328456), FN_DECIMAL(-0.9308076766), FN_DECIMAL(0.4617069864), FN_DECIMAL(0.3190983137), FN_DECIMAL(0.9116567753), FN_DECIMAL(-0.45029554), FN_DECIMAL(0.3346334459), FN_DECIMAL(0.8525005645), FN_DECIMAL(0.2528483381), FN_DECIMAL(-0.8306630147), FN_DECIMAL(-0.6880390622), FN_DECIMAL(0.7448684026), FN_DECIMAL(-0.1963355843), FN_DECIMAL(-0.5900257974), FN_DECIMAL(0.9097057294), FN_DECIMAL(-0.2509196808),
|
|
};
|
|
const FN_DECIMAL CELL_3D_Y[] =
|
|
{
|
|
FN_DECIMAL(-0.6760585049), FN_DECIMAL(-0.09136176499), FN_DECIMAL(0.1681325679), FN_DECIMAL(-0.6688468686), FN_DECIMAL(-0.4822753902), FN_DECIMAL(-0.7891068824), FN_DECIMAL(-0.1877509944), FN_DECIMAL(0.548470914), FN_DECIMAL(-0.463339443), FN_DECIMAL(-0.4050542082), FN_DECIMAL(0.3218158513), FN_DECIMAL(0.2546493823), FN_DECIMAL(-0.3753271935), FN_DECIMAL(0.4745384887), FN_DECIMAL(0.481254652), FN_DECIMAL(-0.8934416489),
|
|
FN_DECIMAL(-0.6737085076), FN_DECIMAL(0.7469917228), FN_DECIMAL(0.3826230411), FN_DECIMAL(0.6751013678), FN_DECIMAL(-0.7248119515), FN_DECIMAL(-0.3224276742), FN_DECIMAL(-0.02076190936), FN_DECIMAL(-0.6404268166), FN_DECIMAL(-0.5292028444), FN_DECIMAL(0.7151414636), FN_DECIMAL(-0.6144655059), FN_DECIMAL(-0.369912124), FN_DECIMAL(0.6942067212), FN_DECIMAL(-0.4481558248), FN_DECIMAL(-0.6366894559), FN_DECIMAL(0.5956568471),
|
|
FN_DECIMAL(0.564274539), FN_DECIMAL(0.7145584688), FN_DECIMAL(0.6871918316), FN_DECIMAL(0.5657918509), FN_DECIMAL(-0.6275978114), FN_DECIMAL(0.4146983062), FN_DECIMAL(0.2638993789), FN_DECIMAL(-0.792633138), FN_DECIMAL(0.5706133514), FN_DECIMAL(0.8606546462), FN_DECIMAL(0.6490900316), FN_DECIMAL(-0.8242699196), FN_DECIMAL(0.6765819124), FN_DECIMAL(0.1959534069), FN_DECIMAL(-0.8426769757), FN_DECIMAL(-0.5917672797),
|
|
FN_DECIMAL(0.7517364266), FN_DECIMAL(0.03252559226), FN_DECIMAL(0.0883617105), FN_DECIMAL(0.4475064813), FN_DECIMAL(-0.1418643552), FN_DECIMAL(0.7343428473), FN_DECIMAL(0.3870192548), FN_DECIMAL(-0.7716703522), FN_DECIMAL(0.4839898327), FN_DECIMAL(0.7437439055), FN_DECIMAL(-0.5989573348), FN_DECIMAL(-0.8357068955), FN_DECIMAL(0.6086049038), FN_DECIMAL(0.9194627258), FN_DECIMAL(0.4718297238), FN_DECIMAL(-0.2650335884),
|
|
FN_DECIMAL(-0.6470352599), FN_DECIMAL(-0.5555181303), FN_DECIMAL(0.1222351235), FN_DECIMAL(0.7802044684), FN_DECIMAL(-0.8636947022), FN_DECIMAL(-0.2341352163), FN_DECIMAL(0.683030874), FN_DECIMAL(-0.5005858287), FN_DECIMAL(0.2334616211), FN_DECIMAL(0.2576877608), FN_DECIMAL(0.6666816727), FN_DECIMAL(-0.7663996863), FN_DECIMAL(0.794201982), FN_DECIMAL(0.6189308788), FN_DECIMAL(0.6071033261), FN_DECIMAL(-0.4206058253),
|
|
FN_DECIMAL(-0.3957336915), FN_DECIMAL(-0.8170257484), FN_DECIMAL(-0.1043240417), FN_DECIMAL(0.0002167596213), FN_DECIMAL(0.1816339018), FN_DECIMAL(-0.6838094939), FN_DECIMAL(-0.2495341969), FN_DECIMAL(-0.7116756954), FN_DECIMAL(-0.03361673621), FN_DECIMAL(-0.3350836431), FN_DECIMAL(0.2137186039), FN_DECIMAL(0.2557996786), FN_DECIMAL(0.7490117093), FN_DECIMAL(0.4942936549), FN_DECIMAL(-0.352686853), FN_DECIMAL(-0.3952445435),
|
|
FN_DECIMAL(-0.0459964767), FN_DECIMAL(-0.7115787471), FN_DECIMAL(0.08022899756), FN_DECIMAL(0.5362268157), FN_DECIMAL(-0.8258613686), FN_DECIMAL(0.1114171723), FN_DECIMAL(0.3882823051), FN_DECIMAL(-0.7915404457), FN_DECIMAL(0.3250957662), FN_DECIMAL(0.6401346464), FN_DECIMAL(-0.2662724517), FN_DECIMAL(-0.6727907114), FN_DECIMAL(-0.994730818), FN_DECIMAL(-0.3596358977), FN_DECIMAL(0.2344610069), FN_DECIMAL(-0.6645215546),
|
|
FN_DECIMAL(-0.7107590611), FN_DECIMAL(-0.4646617327), FN_DECIMAL(0.6717191355), FN_DECIMAL(0.5101893498), FN_DECIMAL(0.1185768238), FN_DECIMAL(0.236005093), FN_DECIMAL(-0.7811024061), FN_DECIMAL(0.5089325193), FN_DECIMAL(0.6073187658), FN_DECIMAL(-0.7930732557), FN_DECIMAL(-0.6822767155), FN_DECIMAL(0.3201532885), FN_DECIMAL(0.7545302807), FN_DECIMAL(0.1072664448), FN_DECIMAL(0.6784033173), FN_DECIMAL(-0.6595924967),
|
|
FN_DECIMAL(0.7276509498), FN_DECIMAL(0.5586689436), FN_DECIMAL(-0.6498636788), FN_DECIMAL(0.6789333174), FN_DECIMAL(0.7105966551), FN_DECIMAL(-0.2872214155), FN_DECIMAL(0.496746217), FN_DECIMAL(-0.3880337977), FN_DECIMAL(0.7324070604), FN_DECIMAL(-0.9326634749), FN_DECIMAL(-0.5867839255), FN_DECIMAL(0.8003043651), FN_DECIMAL(-0.1631882481), FN_DECIMAL(-0.6796374681), FN_DECIMAL(-0.8066678503), FN_DECIMAL(0.4238177418),
|
|
FN_DECIMAL(0.7715863549), FN_DECIMAL(0.5455367347), FN_DECIMAL(-0.03205115397), FN_DECIMAL(-0.6005545066), FN_DECIMAL(-0.5423640002), FN_DECIMAL(0.3569205906), FN_DECIMAL(-0.582071752), FN_DECIMAL(0.6407354361), FN_DECIMAL(0.7777142984), FN_DECIMAL(-0.09956428618), FN_DECIMAL(0.1100002681), FN_DECIMAL(0.8136349123), FN_DECIMAL(0.2923431904), FN_DECIMAL(0.9735794425), FN_DECIMAL(0.8324974864), FN_DECIMAL(-0.6179617717),
|
|
FN_DECIMAL(-0.9248386523), FN_DECIMAL(-0.6448780771), FN_DECIMAL(-0.5274402761), FN_DECIMAL(-0.7862170565), FN_DECIMAL(0.2682099744), FN_DECIMAL(-0.5848777694), FN_DECIMAL(-0.6364561467), FN_DECIMAL(-0.7167402514), FN_DECIMAL(-0.8677012494), FN_DECIMAL(0.4205286707), FN_DECIMAL(-0.7007832749), FN_DECIMAL(0.243272451), FN_DECIMAL(-0.1899846085), FN_DECIMAL(-0.6146124977), FN_DECIMAL(-0.8093357692), FN_DECIMAL(-0.03545096987),
|
|
FN_DECIMAL(-0.7191590868), FN_DECIMAL(0.7478645848), FN_DECIMAL(0.3623517328), FN_DECIMAL(0.8436992512), FN_DECIMAL(-0.2445711729), FN_DECIMAL(0.6897356637), FN_DECIMAL(-0.1708070787), FN_DECIMAL(0.4639272368), FN_DECIMAL(-0.7917186656), FN_DECIMAL(0.02980025428), FN_DECIMAL(0.6334156172), FN_DECIMAL(-0.9815544807), FN_DECIMAL(-0.2307217304), FN_DECIMAL(0.1080823318), FN_DECIMAL(0.5167601798), FN_DECIMAL(-0.845120016),
|
|
FN_DECIMAL(0.441572562), FN_DECIMAL(0.5876789172), FN_DECIMAL(-0.6365908737), FN_DECIMAL(0.68350166), FN_DECIMAL(0.5849723959), FN_DECIMAL(0.1164114357), FN_DECIMAL(-0.7379813884), FN_DECIMAL(-0.9613237178), FN_DECIMAL(-0.9071943084), FN_DECIMAL(-0.7682111105), FN_DECIMAL(0.639074459), FN_DECIMAL(-0.619358298), FN_DECIMAL(0.2807257131), FN_DECIMAL(-0.01800868791), FN_DECIMAL(0.3776607289), FN_DECIMAL(0.7207567823),
|
|
FN_DECIMAL(0.5536661486), FN_DECIMAL(-0.9974053117), FN_DECIMAL(-0.02047200006), FN_DECIMAL(-0.6739453804), FN_DECIMAL(-0.5607471297), FN_DECIMAL(0.8815553192), FN_DECIMAL(0.8275977415), FN_DECIMAL(0.3928902456), FN_DECIMAL(0.550991396), FN_DECIMAL(0.4247623676), FN_DECIMAL(-0.3436948871), FN_DECIMAL(-0.3653537677), FN_DECIMAL(0.3181702902), FN_DECIMAL(-0.6067173171), FN_DECIMAL(-0.8984128477), FN_DECIMAL(0.4220839766),
|
|
FN_DECIMAL(0.7238407199), FN_DECIMAL(-0.7766913695), FN_DECIMAL(0.6460037842), FN_DECIMAL(0.2544775664), FN_DECIMAL(0.6488840578), FN_DECIMAL(0.805016833), FN_DECIMAL(-0.9183807036), FN_DECIMAL(0.4144046357), FN_DECIMAL(0.270587208), FN_DECIMAL(-0.8813684494), FN_DECIMAL(0.6985971877), FN_DECIMAL(-0.7795603017), FN_DECIMAL(-0.8624480731), FN_DECIMAL(0.5532697017), FN_DECIMAL(0.711179521), FN_DECIMAL(-0.7798160574),
|
|
FN_DECIMAL(0.5225859041), FN_DECIMAL(0.1261859368), FN_DECIMAL(0.3398033582), FN_DECIMAL(-0.7472173667), FN_DECIMAL(-0.4032647119), FN_DECIMAL(-0.4246578154), FN_DECIMAL(0.8481212377), FN_DECIMAL(-0.2144838537), FN_DECIMAL(0.3431714491), FN_DECIMAL(0.5310188231), FN_DECIMAL(0.6682978632), FN_DECIMAL(0.3110433206), FN_DECIMAL(0.9263293599), FN_DECIMAL(-0.6155600569), FN_DECIMAL(0.07169784399), FN_DECIMAL(0.8985888773),
|
|
};
|
|
const FN_DECIMAL CELL_3D_Z[] =
|
|
{
|
|
FN_DECIMAL(-0.6341391283), FN_DECIMAL(-0.7207118346), FN_DECIMAL(0.9597866014), FN_DECIMAL(0.3237504235), FN_DECIMAL(-0.7588642466), FN_DECIMAL(-0.01782410481), FN_DECIMAL(0.2515593809), FN_DECIMAL(0.2207257205), FN_DECIMAL(-0.8579541106), FN_DECIMAL(0.3406410681), FN_DECIMAL(0.7669470462), FN_DECIMAL(-0.9431957648), FN_DECIMAL(0.7676171537), FN_DECIMAL(-0.6000491115), FN_DECIMAL(-0.7062096948), FN_DECIMAL(0.2550207115),
|
|
FN_DECIMAL(0.7347325213), FN_DECIMAL(0.5163625202), FN_DECIMAL(-0.5394270162), FN_DECIMAL(0.3336656285), FN_DECIMAL(-0.0638635111), FN_DECIMAL(-0.6503195787), FN_DECIMAL(0.3143356798), FN_DECIMAL(-0.5039217245), FN_DECIMAL(0.6605180464), FN_DECIMAL(-0.6855479011), FN_DECIMAL(-0.6693185756), FN_DECIMAL(0.1832083647), FN_DECIMAL(-0.5666258437), FN_DECIMAL(0.3576482138), FN_DECIMAL(-0.6571949095), FN_DECIMAL(-0.7522101635),
|
|
FN_DECIMAL(-0.7238865886), FN_DECIMAL(0.4538887323), FN_DECIMAL(0.2467106257), FN_DECIMAL(0.7274778869), FN_DECIMAL(0.3151170655), FN_DECIMAL(-0.8802293764), FN_DECIMAL(-0.2167232729), FN_DECIMAL(0.5854637865), FN_DECIMAL(0.7019741052), FN_DECIMAL(0.5091756071), FN_DECIMAL(0.1973189533), FN_DECIMAL(0.46743546), FN_DECIMAL(0.05197599597), FN_DECIMAL(0.088354718), FN_DECIMAL(0.5380464843), FN_DECIMAL(-0.6458224544),
|
|
FN_DECIMAL(-0.5045952393), FN_DECIMAL(0.419347884), FN_DECIMAL(0.8000823542), FN_DECIMAL(-0.07445020656), FN_DECIMAL(-0.6272881641), FN_DECIMAL(-0.428020311), FN_DECIMAL(-0.2747382083), FN_DECIMAL(-0.08987283726), FN_DECIMAL(0.8699098354), FN_DECIMAL(0.4524761885), FN_DECIMAL(-0.3274603257), FN_DECIMAL(0.4882262167), FN_DECIMAL(-0.7189983256), FN_DECIMAL(0.1746079907), FN_DECIMAL(0.0751772698), FN_DECIMAL(-0.6152927202),
|
|
FN_DECIMAL(0.4998474673), FN_DECIMAL(-0.6979677227), FN_DECIMAL(0.7568667263), FN_DECIMAL(-0.6152612058), FN_DECIMAL(0.06447140991), FN_DECIMAL(-0.8155744872), FN_DECIMAL(-0.5229602449), FN_DECIMAL(0.6567836838), FN_DECIMAL(-0.4799905631), FN_DECIMAL(0.03153534591), FN_DECIMAL(0.4724992466), FN_DECIMAL(-0.3026458097), FN_DECIMAL(-0.2191225827), FN_DECIMAL(-0.620692287), FN_DECIMAL(0.3107552588), FN_DECIMAL(0.8235670294),
|
|
FN_DECIMAL(0.6474915988), FN_DECIMAL(-0.5047637941), FN_DECIMAL(0.4911488878), FN_DECIMAL(-0.2307138167), FN_DECIMAL(-0.5216800015), FN_DECIMAL(0.6789305939), FN_DECIMAL(0.9403734863), FN_DECIMAL(0.702390397), FN_DECIMAL(0.7347584625), FN_DECIMAL(0.6779567958), FN_DECIMAL(0.9765635805), FN_DECIMAL(-0.9436177661), FN_DECIMAL(-0.358465925), FN_DECIMAL(-0.3058706624), FN_DECIMAL(0.5533414464), FN_DECIMAL(-0.8838306897),
|
|
FN_DECIMAL(0.04496841812), FN_DECIMAL(0.01687374963), FN_DECIMAL(-0.9927133148), FN_DECIMAL(-0.211752318), FN_DECIMAL(0.3732015249), FN_DECIMAL(0.9632990593), FN_DECIMAL(-0.07682417004), FN_DECIMAL(-0.07232213047), FN_DECIMAL(0.4733721775), FN_DECIMAL(0.2579229713), FN_DECIMAL(0.7995216286), FN_DECIMAL(0.3928189967), FN_DECIMAL(0.04107517667), FN_DECIMAL(0.1534542912), FN_DECIMAL(0.6468965045), FN_DECIMAL(0.4030684878),
|
|
FN_DECIMAL(-0.5617300988), FN_DECIMAL(-0.885463029), FN_DECIMAL(0.693729985), FN_DECIMAL(-0.5736527866), FN_DECIMAL(-0.9911905409), FN_DECIMAL(-0.66451538), FN_DECIMAL(0.2028855685), FN_DECIMAL(0.8019541421), FN_DECIMAL(-0.3903877149), FN_DECIMAL(-0.4888495114), FN_DECIMAL(-0.2753714057), FN_DECIMAL(-0.8915202143), FN_DECIMAL(0.5273119089), FN_DECIMAL(0.9363714773), FN_DECIMAL(-0.5212228249), FN_DECIMAL(-0.31642672),
|
|
FN_DECIMAL(0.2409440761), FN_DECIMAL(-0.703776404), FN_DECIMAL(-0.6996810411), FN_DECIMAL(-0.7058714505), FN_DECIMAL(-0.3650566783), FN_DECIMAL(0.1064744278), FN_DECIMAL(0.7985729102), FN_DECIMAL(0.424680257), FN_DECIMAL(-0.6384535592), FN_DECIMAL(0.1540161646), FN_DECIMAL(-0.07702731943), FN_DECIMAL(-0.5627789132), FN_DECIMAL(-0.7667919169), FN_DECIMAL(-0.509815999), FN_DECIMAL(0.4590525092), FN_DECIMAL(0.1552595611),
|
|
FN_DECIMAL(0.345402042), FN_DECIMAL(0.7537656024), FN_DECIMAL(0.7906259247), FN_DECIMAL(-0.6218493452), FN_DECIMAL(0.02979350071), FN_DECIMAL(-0.1337893489), FN_DECIMAL(-0.1483818606), FN_DECIMAL(0.549965562), FN_DECIMAL(0.01882482408), FN_DECIMAL(-0.7833783002), FN_DECIMAL(0.4702855809), FN_DECIMAL(0.2435827372), FN_DECIMAL(0.2978428332), FN_DECIMAL(0.2256499906), FN_DECIMAL(0.4885036897), FN_DECIMAL(0.5312962584),
|
|
FN_DECIMAL(0.05401156992), FN_DECIMAL(0.1749922158), FN_DECIMAL(-0.7352273018), FN_DECIMAL(0.6058980284), FN_DECIMAL(0.4416079111), FN_DECIMAL(0.4417378638), FN_DECIMAL(0.5455879807), FN_DECIMAL(-0.6681295324), FN_DECIMAL(0.1973431441), FN_DECIMAL(0.4053292055), FN_DECIMAL(0.2220375492), FN_DECIMAL(0.2957118467), FN_DECIMAL(0.6910913512), FN_DECIMAL(0.5940890106), FN_DECIMAL(-0.2014135283), FN_DECIMAL(-0.9172588213),
|
|
FN_DECIMAL(-0.4254361401), FN_DECIMAL(-0.6146586825), FN_DECIMAL(-0.7996193253), FN_DECIMAL(-0.3716777111), FN_DECIMAL(-0.9448876842), FN_DECIMAL(-0.2620349924), FN_DECIMAL(0.9615995749), FN_DECIMAL(-0.4679683524), FN_DECIMAL(0.3905937144), FN_DECIMAL(0.613593722), FN_DECIMAL(0.1422937358), FN_DECIMAL(0.1908754211), FN_DECIMAL(0.8189704912), FN_DECIMAL(-0.7300408736), FN_DECIMAL(-0.4108776451), FN_DECIMAL(-0.5319834504),
|
|
FN_DECIMAL(-0.8970265651), FN_DECIMAL(-0.5386359045), FN_DECIMAL(0.4082255906), FN_DECIMAL(0.7245356676), FN_DECIMAL(0.5239080873), FN_DECIMAL(-0.8937552226), FN_DECIMAL(-0.553637673), FN_DECIMAL(0.2354455182), FN_DECIMAL(-0.0860293075), FN_DECIMAL(-0.1399373318), FN_DECIMAL(-0.4666323327), FN_DECIMAL(0.5560157407), FN_DECIMAL(0.1772619533), FN_DECIMAL(-0.8893937725), FN_DECIMAL(-0.5632714576), FN_DECIMAL(-0.5666264959),
|
|
FN_DECIMAL(-0.3670263736), FN_DECIMAL(-0.06717242579), FN_DECIMAL(0.6205295181), FN_DECIMAL(-0.4110536264), FN_DECIMAL(0.7090054553), FN_DECIMAL(0.183899597), FN_DECIMAL(-0.5605470555), FN_DECIMAL(0.3879565548), FN_DECIMAL(0.7420893903), FN_DECIMAL(-0.2347595118), FN_DECIMAL(-0.8577217497), FN_DECIMAL(0.6325590203), FN_DECIMAL(-0.8736152276), FN_DECIMAL(0.7048011129), FN_DECIMAL(-0.06317948268), FN_DECIMAL(0.8753285574),
|
|
FN_DECIMAL(-0.05843650473), FN_DECIMAL(-0.3674922622), FN_DECIMAL(-0.5256624401), FN_DECIMAL(0.7861039337), FN_DECIMAL(0.3287714416), FN_DECIMAL(0.5910593099), FN_DECIMAL(-0.3896960134), FN_DECIMAL(0.6864605361), FN_DECIMAL(0.7164918431), FN_DECIMAL(-0.290014277), FN_DECIMAL(-0.6796169617), FN_DECIMAL(0.1632515592), FN_DECIMAL(0.04485347486), FN_DECIMAL(0.8320545697), FN_DECIMAL(0.01339408056), FN_DECIMAL(-0.2874989857),
|
|
FN_DECIMAL(0.615630723), FN_DECIMAL(0.3430367014), FN_DECIMAL(0.8193658136), FN_DECIMAL(-0.5829600957), FN_DECIMAL(0.07911697781), FN_DECIMAL(0.7854296063), FN_DECIMAL(-0.4107442306), FN_DECIMAL(0.4766964066), FN_DECIMAL(-0.9045999527), FN_DECIMAL(-0.1673856787), FN_DECIMAL(0.2828077348), FN_DECIMAL(-0.5902737632), FN_DECIMAL(-0.321506229), FN_DECIMAL(-0.5224513133), FN_DECIMAL(-0.4090169985), FN_DECIMAL(-0.3599685311),
|
|
};
|
|
|
|
static int FastFloor(FN_DECIMAL f) { return (f >= 0 ? (int)f : (int)f - 1); }
|
|
static int FastRound(FN_DECIMAL f) { return (f >= 0) ? (int)(f + FN_DECIMAL(0.5)) : (int)(f - FN_DECIMAL(0.5)); }
|
|
static int FastAbs(int i) { return abs(i); }
|
|
static FN_DECIMAL FastAbs(FN_DECIMAL f) { return fabs(f); }
|
|
static FN_DECIMAL Lerp(FN_DECIMAL a, FN_DECIMAL b, FN_DECIMAL t) { return a + t * (b - a); }
|
|
static FN_DECIMAL InterpHermiteFunc(FN_DECIMAL t) { return t*t*(3 - 2 * t); }
|
|
static FN_DECIMAL InterpQuinticFunc(FN_DECIMAL t) { return t*t*t*(t*(t * 6 - 15) + 10); }
|
|
static FN_DECIMAL CubicLerp(FN_DECIMAL a, FN_DECIMAL b, FN_DECIMAL c, FN_DECIMAL d, FN_DECIMAL t)
|
|
{
|
|
FN_DECIMAL p = (d - c) - (a - b);
|
|
return t * t * t * p + t * t * ((a - b) - p) + t * (c - a) + b;
|
|
}
|
|
|
|
void FastNoise::SetSeed(int seed)
|
|
{
|
|
m_seed = seed;
|
|
|
|
std::mt19937_64 gen(seed);
|
|
|
|
for (int i = 0; i < 256; i++)
|
|
m_perm[i] = i;
|
|
|
|
for (int j = 0; j < 256; j++)
|
|
{
|
|
int rng = (int)(gen() % (256 - j));
|
|
int k = rng + j;
|
|
int l = m_perm[j];
|
|
m_perm[j] = m_perm[j + 256] = m_perm[k];
|
|
m_perm[k] = l;
|
|
m_perm12[j] = m_perm12[j + 256] = m_perm[j] % 12;
|
|
}
|
|
}
|
|
|
|
void FastNoise::CalculateFractalBounding()
|
|
{
|
|
FN_DECIMAL amp = m_gain;
|
|
FN_DECIMAL ampFractal = 1.0f;
|
|
for (int i = 1; i < m_octaves; i++)
|
|
{
|
|
ampFractal += amp;
|
|
amp *= m_gain;
|
|
}
|
|
m_fractalBounding = 1.0f / ampFractal;
|
|
}
|
|
|
|
void FastNoise::SetCellularDistance2Indices(int cellularDistanceIndex0, int cellularDistanceIndex1)
|
|
{
|
|
m_cellularDistanceIndex0 = std::min(cellularDistanceIndex0, cellularDistanceIndex1);
|
|
m_cellularDistanceIndex1 = std::max(cellularDistanceIndex0, cellularDistanceIndex1);
|
|
|
|
m_cellularDistanceIndex0 = std::min(std::max(m_cellularDistanceIndex0, 0), FN_CELLULAR_INDEX_MAX);
|
|
m_cellularDistanceIndex1 = std::min(std::max(m_cellularDistanceIndex1, 0), FN_CELLULAR_INDEX_MAX);
|
|
}
|
|
|
|
void FastNoise::GetCellularDistance2Indices(int& cellularDistanceIndex0, int& cellularDistanceIndex1) const
|
|
{
|
|
cellularDistanceIndex0 = m_cellularDistanceIndex0;
|
|
cellularDistanceIndex1 = m_cellularDistanceIndex1;
|
|
}
|
|
|
|
unsigned char FastNoise::Index2D_12(unsigned char offset, int x, int y) const
|
|
{
|
|
return m_perm12[(x & 0xff) + m_perm[(y & 0xff) + offset]];
|
|
}
|
|
unsigned char FastNoise::Index3D_12(unsigned char offset, int x, int y, int z) const
|
|
{
|
|
return m_perm12[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + offset]]];
|
|
}
|
|
unsigned char FastNoise::Index4D_32(unsigned char offset, int x, int y, int z, int w) const
|
|
{
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + m_perm[(w & 0xff) + offset]]]] & 31;
|
|
}
|
|
unsigned char FastNoise::Index2D_256(unsigned char offset, int x, int y) const
|
|
{
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + offset]];
|
|
}
|
|
unsigned char FastNoise::Index3D_256(unsigned char offset, int x, int y, int z) const
|
|
{
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + offset]]];
|
|
}
|
|
unsigned char FastNoise::Index4D_256(unsigned char offset, int x, int y, int z, int w) const
|
|
{
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + m_perm[(w & 0xff) + offset]]]];
|
|
}
|
|
|
|
// Hashing
|
|
#define X_PRIME 1619
|
|
#define Y_PRIME 31337
|
|
#define Z_PRIME 6971
|
|
#define W_PRIME 1013
|
|
|
|
static FN_DECIMAL ValCoord2D(int seed, int x, int y)
|
|
{
|
|
int n = seed;
|
|
n ^= X_PRIME * x;
|
|
n ^= Y_PRIME * y;
|
|
|
|
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
|
|
}
|
|
static FN_DECIMAL ValCoord3D(int seed, int x, int y, int z)
|
|
{
|
|
int n = seed;
|
|
n ^= X_PRIME * x;
|
|
n ^= Y_PRIME * y;
|
|
n ^= Z_PRIME * z;
|
|
|
|
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
|
|
}
|
|
static FN_DECIMAL ValCoord4D(int seed, int x, int y, int z, int w)
|
|
{
|
|
int n = seed;
|
|
n ^= X_PRIME * x;
|
|
n ^= Y_PRIME * y;
|
|
n ^= Z_PRIME * z;
|
|
n ^= W_PRIME * w;
|
|
|
|
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::ValCoord2DFast(unsigned char offset, int x, int y) const
|
|
{
|
|
return VAL_LUT[Index2D_256(offset, x, y)];
|
|
}
|
|
FN_DECIMAL FastNoise::ValCoord3DFast(unsigned char offset, int x, int y, int z) const
|
|
{
|
|
return VAL_LUT[Index3D_256(offset, x, y, z)];
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GradCoord2D(unsigned char offset, int x, int y, FN_DECIMAL xd, FN_DECIMAL yd) const
|
|
{
|
|
unsigned char lutPos = Index2D_12(offset, x, y);
|
|
|
|
return xd*GRAD_X[lutPos] + yd*GRAD_Y[lutPos];
|
|
}
|
|
FN_DECIMAL FastNoise::GradCoord3D(unsigned char offset, int x, int y, int z, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd) const
|
|
{
|
|
unsigned char lutPos = Index3D_12(offset, x, y, z);
|
|
|
|
return xd*GRAD_X[lutPos] + yd*GRAD_Y[lutPos] + zd*GRAD_Z[lutPos];
|
|
}
|
|
FN_DECIMAL FastNoise::GradCoord4D(unsigned char offset, int x, int y, int z, int w, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd, FN_DECIMAL wd) const
|
|
{
|
|
unsigned char lutPos = Index4D_32(offset, x, y, z, w) << 2;
|
|
|
|
return xd*GRAD_4D[lutPos] + yd*GRAD_4D[lutPos + 1] + zd*GRAD_4D[lutPos + 2] + wd*GRAD_4D[lutPos + 3];
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_noiseType)
|
|
{
|
|
case Value:
|
|
return SingleValue(0, x, y, z);
|
|
case ValueFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
case Perlin:
|
|
return SinglePerlin(0, x, y, z);
|
|
case PerlinFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
case Simplex:
|
|
return SingleSimplex(0, x, y, z);
|
|
case SimplexFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
case Cellular:
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y, z);
|
|
default:
|
|
return SingleCellular2Edge(x, y, z);
|
|
}
|
|
case WhiteNoise:
|
|
return GetWhiteNoise(x, y, z);
|
|
case Cubic:
|
|
return SingleCubic(0, x, y, z);
|
|
case CubicFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y, z);
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetNoise(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_noiseType)
|
|
{
|
|
case Value:
|
|
return SingleValue(0, x, y);
|
|
case ValueFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y);
|
|
}
|
|
case Perlin:
|
|
return SinglePerlin(0, x, y);
|
|
case PerlinFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y);
|
|
}
|
|
case Simplex:
|
|
return SingleSimplex(0, x, y);
|
|
case SimplexFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y);
|
|
}
|
|
case Cellular:
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y);
|
|
default:
|
|
return SingleCellular2Edge(x, y);
|
|
}
|
|
case WhiteNoise:
|
|
return GetWhiteNoise(x, y);
|
|
case Cubic:
|
|
return SingleCubic(0, x, y);
|
|
case CubicFractal:
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// White Noise
|
|
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const
|
|
{
|
|
return ValCoord4D(m_seed,
|
|
*reinterpret_cast<int*>(&x) ^ (*reinterpret_cast<int*>(&x) >> 16),
|
|
*reinterpret_cast<int*>(&y) ^ (*reinterpret_cast<int*>(&y) >> 16),
|
|
*reinterpret_cast<int*>(&z) ^ (*reinterpret_cast<int*>(&z) >> 16),
|
|
*reinterpret_cast<int*>(&w) ^ (*reinterpret_cast<int*>(&w) >> 16));
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
return ValCoord3D(m_seed,
|
|
*reinterpret_cast<int*>(&x) ^ (*reinterpret_cast<int*>(&x) >> 16),
|
|
*reinterpret_cast<int*>(&y) ^ (*reinterpret_cast<int*>(&y) >> 16),
|
|
*reinterpret_cast<int*>(&z) ^ (*reinterpret_cast<int*>(&z) >> 16));
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
return ValCoord2D(m_seed,
|
|
*reinterpret_cast<int*>(&x) ^ (*reinterpret_cast<int*>(&x) >> 16),
|
|
*reinterpret_cast<int*>(&y) ^ (*reinterpret_cast<int*>(&y) >> 16));
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y, int z, int w) const
|
|
{
|
|
return ValCoord4D(m_seed, x, y, z, w);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y, int z) const
|
|
{
|
|
return ValCoord3D(m_seed, x, y, z);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y) const
|
|
{
|
|
return ValCoord2D(m_seed, x, y);
|
|
}
|
|
|
|
// Value Noise
|
|
FN_DECIMAL FastNoise::GetValueFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = SingleValue(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleValue(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SingleValue(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleValue(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleValue(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleValue(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetValue(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
return SingleValue(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int z0 = FastFloor(z);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
int z1 = z0 + 1;
|
|
|
|
FN_DECIMAL xs, ys, zs;
|
|
switch (m_interp)
|
|
{
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
zs = z - (FN_DECIMAL)z0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpHermiteFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpQuinticFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xf00 = Lerp(ValCoord3DFast(offset, x0, y0, z0), ValCoord3DFast(offset, x1, y0, z0), xs);
|
|
FN_DECIMAL xf10 = Lerp(ValCoord3DFast(offset, x0, y1, z0), ValCoord3DFast(offset, x1, y1, z0), xs);
|
|
FN_DECIMAL xf01 = Lerp(ValCoord3DFast(offset, x0, y0, z1), ValCoord3DFast(offset, x1, y0, z1), xs);
|
|
FN_DECIMAL xf11 = Lerp(ValCoord3DFast(offset, x0, y1, z1), ValCoord3DFast(offset, x1, y1, z1), xs);
|
|
|
|
FN_DECIMAL yf0 = Lerp(xf00, xf10, ys);
|
|
FN_DECIMAL yf1 = Lerp(xf01, xf11, ys);
|
|
|
|
return Lerp(yf0, yf1, zs);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetValueFractal(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = SingleValue(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleValue(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SingleValue(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleValue(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleValue(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleValue(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetValue(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
return SingleValue(0, x * m_frequency, y * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
|
|
FN_DECIMAL xs, ys;
|
|
switch (m_interp)
|
|
{
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xf0 = Lerp(ValCoord2DFast(offset, x0, y0), ValCoord2DFast(offset, x1, y0), xs);
|
|
FN_DECIMAL xf1 = Lerp(ValCoord2DFast(offset, x0, y1), ValCoord2DFast(offset, x1, y1), xs);
|
|
|
|
return Lerp(xf0, xf1, ys);
|
|
}
|
|
|
|
// Perlin Noise
|
|
FN_DECIMAL FastNoise::GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = SinglePerlin(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SinglePerlin(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SinglePerlin(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SinglePerlin(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SinglePerlin(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SinglePerlin(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetPerlin(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
return SinglePerlin(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int z0 = FastFloor(z);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
int z1 = z0 + 1;
|
|
|
|
FN_DECIMAL xs, ys, zs;
|
|
switch (m_interp)
|
|
{
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
zs = z - (FN_DECIMAL)z0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpHermiteFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpQuinticFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xd0 = x - (FN_DECIMAL)x0;
|
|
FN_DECIMAL yd0 = y - (FN_DECIMAL)y0;
|
|
FN_DECIMAL zd0 = z - (FN_DECIMAL)z0;
|
|
FN_DECIMAL xd1 = xd0 - 1;
|
|
FN_DECIMAL yd1 = yd0 - 1;
|
|
FN_DECIMAL zd1 = zd0 - 1;
|
|
|
|
FN_DECIMAL xf00 = Lerp(GradCoord3D(offset, x0, y0, z0, xd0, yd0, zd0), GradCoord3D(offset, x1, y0, z0, xd1, yd0, zd0), xs);
|
|
FN_DECIMAL xf10 = Lerp(GradCoord3D(offset, x0, y1, z0, xd0, yd1, zd0), GradCoord3D(offset, x1, y1, z0, xd1, yd1, zd0), xs);
|
|
FN_DECIMAL xf01 = Lerp(GradCoord3D(offset, x0, y0, z1, xd0, yd0, zd1), GradCoord3D(offset, x1, y0, z1, xd1, yd0, zd1), xs);
|
|
FN_DECIMAL xf11 = Lerp(GradCoord3D(offset, x0, y1, z1, xd0, yd1, zd1), GradCoord3D(offset, x1, y1, z1, xd1, yd1, zd1), xs);
|
|
|
|
FN_DECIMAL yf0 = Lerp(xf00, xf10, ys);
|
|
FN_DECIMAL yf1 = Lerp(xf01, xf11, ys);
|
|
|
|
return Lerp(yf0, yf1, zs);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = SinglePerlin(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SinglePerlin(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SinglePerlin(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SinglePerlin(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SinglePerlin(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SinglePerlin(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetPerlin(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
return SinglePerlin(0, x * m_frequency, y * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
|
|
FN_DECIMAL xs, ys;
|
|
switch (m_interp)
|
|
{
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xd0 = x - (FN_DECIMAL)x0;
|
|
FN_DECIMAL yd0 = y - (FN_DECIMAL)y0;
|
|
FN_DECIMAL xd1 = xd0 - 1;
|
|
FN_DECIMAL yd1 = yd0 - 1;
|
|
|
|
FN_DECIMAL xf0 = Lerp(GradCoord2D(offset, x0, y0, xd0, yd0), GradCoord2D(offset, x1, y0, xd1, yd0), xs);
|
|
FN_DECIMAL xf1 = Lerp(GradCoord2D(offset, x0, y1, xd0, yd1), GradCoord2D(offset, x1, y1, xd1, yd1), xs);
|
|
|
|
return Lerp(xf0, xf1, ys);
|
|
}
|
|
|
|
// Simplex Noise
|
|
|
|
FN_DECIMAL FastNoise::GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleSimplex(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SingleSimplex(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleSimplex(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleSimplex(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleSimplex(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
return SingleSimplex(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
static const FN_DECIMAL F3 = 1 / FN_DECIMAL(3);
|
|
static const FN_DECIMAL G3 = 1 / FN_DECIMAL(6);
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL t = (x + y + z) * F3;
|
|
int i = FastFloor(x + t);
|
|
int j = FastFloor(y + t);
|
|
int k = FastFloor(z + t);
|
|
|
|
t = (i + j + k) * G3;
|
|
FN_DECIMAL X0 = i - t;
|
|
FN_DECIMAL Y0 = j - t;
|
|
FN_DECIMAL Z0 = k - t;
|
|
|
|
FN_DECIMAL x0 = x - X0;
|
|
FN_DECIMAL y0 = y - Y0;
|
|
FN_DECIMAL z0 = z - Z0;
|
|
|
|
int i1, j1, k1;
|
|
int i2, j2, k2;
|
|
|
|
if (x0 >= y0)
|
|
{
|
|
if (y0 >= z0)
|
|
{
|
|
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
|
|
}
|
|
else if (x0 >= z0)
|
|
{
|
|
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;
|
|
}
|
|
else // x0 < z0
|
|
{
|
|
i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;
|
|
}
|
|
}
|
|
else // x0 < y0
|
|
{
|
|
if (y0 < z0)
|
|
{
|
|
i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;
|
|
}
|
|
else if (x0 < z0)
|
|
{
|
|
i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;
|
|
}
|
|
else // x0 >= z0
|
|
{
|
|
i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL x1 = x0 - i1 + G3;
|
|
FN_DECIMAL y1 = y0 - j1 + G3;
|
|
FN_DECIMAL z1 = z0 - k1 + G3;
|
|
FN_DECIMAL x2 = x0 - i2 + 2*G3;
|
|
FN_DECIMAL y2 = y0 - j2 + 2*G3;
|
|
FN_DECIMAL z2 = z0 - k2 + 2*G3;
|
|
FN_DECIMAL x3 = x0 - 1 + 3*G3;
|
|
FN_DECIMAL y3 = y0 - 1 + 3*G3;
|
|
FN_DECIMAL z3 = z0 - 1 + 3*G3;
|
|
|
|
FN_DECIMAL n0, n1, n2, n3;
|
|
|
|
t = FN_DECIMAL(0.6) - x0*x0 - y0*y0 - z0*z0;
|
|
if (t < 0) n0 = 0;
|
|
else
|
|
{
|
|
t *= t;
|
|
n0 = t*t*GradCoord3D(offset, i, j, k, x0, y0, z0);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.6) - x1*x1 - y1*y1 - z1*z1;
|
|
if (t < 0) n1 = 0;
|
|
else
|
|
{
|
|
t *= t;
|
|
n1 = t*t*GradCoord3D(offset, i + i1, j + j1, k + k1, x1, y1, z1);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.6) - x2*x2 - y2*y2 - z2*z2;
|
|
if (t < 0) n2 = 0;
|
|
else
|
|
{
|
|
t *= t;
|
|
n2 = t*t*GradCoord3D(offset, i + i2, j + j2, k + k2, x2, y2, z2);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.6) - x3*x3 - y3*y3 - z3*z3;
|
|
if (t < 0) n3 = 0;
|
|
else
|
|
{
|
|
t *= t;
|
|
n3 = t*t*GradCoord3D(offset, i + 1, j + 1, k + 1, x3, y3, z3);
|
|
}
|
|
|
|
return 32 * (n0 + n1 + n2 + n3);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleSimplex(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SingleSimplex(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleSimplex(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleSimplex(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleSimplex(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalBlend(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum *= SingleSimplex(m_perm[i], x, y) * amp + 1;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
return SingleSimplex(0, x * m_frequency, y * m_frequency);
|
|
}
|
|
|
|
//static const FN_DECIMAL F2 = 1 / FN_DECIMAL(2);
|
|
//static const FN_DECIMAL G2 = 1 / FN_DECIMAL(4);
|
|
|
|
static const FN_DECIMAL SQRT3 = FN_DECIMAL(1.7320508075688772935274463415059);
|
|
static const FN_DECIMAL F2 = FN_DECIMAL(0.5) * (SQRT3 - FN_DECIMAL(1.0));
|
|
static const FN_DECIMAL G2 = (FN_DECIMAL(3.0) - SQRT3) / FN_DECIMAL(6.0);
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL t = (x + y) * F2;
|
|
int i = FastFloor(x + t);
|
|
int j = FastFloor(y + t);
|
|
|
|
t = (i + j) * G2;
|
|
FN_DECIMAL X0 = i - t;
|
|
FN_DECIMAL Y0 = j - t;
|
|
|
|
FN_DECIMAL x0 = x - X0;
|
|
FN_DECIMAL y0 = y - Y0;
|
|
|
|
int i1, j1;
|
|
if (x0 > y0)
|
|
{
|
|
i1 = 1; j1 = 0;
|
|
}
|
|
else
|
|
{
|
|
i1 = 0; j1 = 1;
|
|
}
|
|
|
|
FN_DECIMAL x1 = x0 - (FN_DECIMAL)i1 + G2;
|
|
FN_DECIMAL y1 = y0 - (FN_DECIMAL)j1 + G2;
|
|
FN_DECIMAL x2 = x0 - 1 + 2*G2;
|
|
FN_DECIMAL y2 = y0 - 1 + 2*G2;
|
|
|
|
FN_DECIMAL n0, n1, n2;
|
|
|
|
t = FN_DECIMAL(0.5) - x0*x0 - y0*y0;
|
|
if (t < 0) n0 = 0;
|
|
else
|
|
{
|
|
t *= t;
|
|
n0 = t * t * GradCoord2D(offset, i, j, x0, y0);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.5) - x1*x1 - y1*y1;
|
|
if (t < 0) n1 = 0;
|
|
else
|
|
{
|
|
t *= t;
|
|
n1 = t*t*GradCoord2D(offset, i + i1, j + j1, x1, y1);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.5) - x2*x2 - y2*y2;
|
|
if (t < 0) n2 = 0;
|
|
else
|
|
{
|
|
t *= t;
|
|
n2 = t*t*GradCoord2D(offset, i + 1, j + 1, x2, y2);
|
|
}
|
|
|
|
return 70 * (n0 + n1 + n2);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const
|
|
{
|
|
return SingleSimplex(0, x * m_frequency, y * m_frequency, z * m_frequency, w * m_frequency);
|
|
}
|
|
|
|
static const unsigned char SIMPLEX_4D[] =
|
|
{
|
|
0,1,2,3,0,1,3,2,0,0,0,0,0,2,3,1,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,0,
|
|
0,2,1,3,0,0,0,0,0,3,1,2,0,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,3,2,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
1,2,0,3,0,0,0,0,1,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,1,2,3,1,0,
|
|
1,0,2,3,1,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,3,1,0,0,0,0,2,1,3,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
2,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,2,3,0,2,1,0,0,0,0,3,1,2,0,
|
|
2,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,2,0,0,0,0,3,2,0,1,3,2,1,0
|
|
};
|
|
|
|
static const FN_DECIMAL F4 = (sqrt(FN_DECIMAL(5)) - 1) / 4;
|
|
static const FN_DECIMAL G4 = (5 - sqrt(FN_DECIMAL(5))) / 20;
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const
|
|
{
|
|
FN_DECIMAL n0, n1, n2, n3, n4;
|
|
FN_DECIMAL t = (x + y + z + w) * F4;
|
|
int i = FastFloor(x + t);
|
|
int j = FastFloor(y + t);
|
|
int k = FastFloor(z + t);
|
|
int l = FastFloor(w + t);
|
|
t = (i + j + k + l) * G4;
|
|
FN_DECIMAL X0 = i - t;
|
|
FN_DECIMAL Y0 = j - t;
|
|
FN_DECIMAL Z0 = k - t;
|
|
FN_DECIMAL W0 = l - t;
|
|
FN_DECIMAL x0 = x - X0;
|
|
FN_DECIMAL y0 = y - Y0;
|
|
FN_DECIMAL z0 = z - Z0;
|
|
FN_DECIMAL w0 = w - W0;
|
|
|
|
int c = (x0 > y0) ? 32 : 0;
|
|
c += (x0 > z0) ? 16 : 0;
|
|
c += (y0 > z0) ? 8 : 0;
|
|
c += (x0 > w0) ? 4 : 0;
|
|
c += (y0 > w0) ? 2 : 0;
|
|
c += (z0 > w0) ? 1 : 0;
|
|
c <<= 2;
|
|
|
|
int i1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int i2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int i3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
|
|
int j1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int j2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int j3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
|
|
int k1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int k2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int k3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
|
|
int l1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int l2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int l3 = SIMPLEX_4D[c] >= 1 ? 1 : 0;
|
|
|
|
FN_DECIMAL x1 = x0 - i1 + G4;
|
|
FN_DECIMAL y1 = y0 - j1 + G4;
|
|
FN_DECIMAL z1 = z0 - k1 + G4;
|
|
FN_DECIMAL w1 = w0 - l1 + G4;
|
|
FN_DECIMAL x2 = x0 - i2 + 2*G4;
|
|
FN_DECIMAL y2 = y0 - j2 + 2*G4;
|
|
FN_DECIMAL z2 = z0 - k2 + 2*G4;
|
|
FN_DECIMAL w2 = w0 - l2 + 2*G4;
|
|
FN_DECIMAL x3 = x0 - i3 + 3*G4;
|
|
FN_DECIMAL y3 = y0 - j3 + 3*G4;
|
|
FN_DECIMAL z3 = z0 - k3 + 3*G4;
|
|
FN_DECIMAL w3 = w0 - l3 + 3*G4;
|
|
FN_DECIMAL x4 = x0 - 1 + 4*G4;
|
|
FN_DECIMAL y4 = y0 - 1 + 4*G4;
|
|
FN_DECIMAL z4 = z0 - 1 + 4*G4;
|
|
FN_DECIMAL w4 = w0 - 1 + 4*G4;
|
|
|
|
t = FN_DECIMAL(0.6) - x0*x0 - y0*y0 - z0*z0 - w0*w0;
|
|
if (t < 0) n0 = 0;
|
|
else {
|
|
t *= t;
|
|
n0 = t * t * GradCoord4D(offset, i, j, k, l, x0, y0, z0, w0);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x1*x1 - y1*y1 - z1*z1 - w1*w1;
|
|
if (t < 0) n1 = 0;
|
|
else {
|
|
t *= t;
|
|
n1 = t * t * GradCoord4D(offset, i + i1, j + j1, k + k1, l + l1, x1, y1, z1, w1);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x2*x2 - y2*y2 - z2*z2 - w2*w2;
|
|
if (t < 0) n2 = 0;
|
|
else {
|
|
t *= t;
|
|
n2 = t * t * GradCoord4D(offset, i + i2, j + j2, k + k2, l + l2, x2, y2, z2, w2);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x3*x3 - y3*y3 - z3*z3 - w3*w3;
|
|
if (t < 0) n3 = 0;
|
|
else {
|
|
t *= t;
|
|
n3 = t * t * GradCoord4D(offset, i + i3, j + j3, k + k3, l + l3, x3, y3, z3, w3);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x4*x4 - y4*y4 - z4*z4 - w4*w4;
|
|
if (t < 0) n4 = 0;
|
|
else {
|
|
t *= t;
|
|
n4 = t * t * GradCoord4D(offset, i + 1, j + 1, k + 1, l + 1, x4, y4, z4, w4);
|
|
}
|
|
|
|
return 27 * (n0 + n1 + n2 + n3 + n4);
|
|
}
|
|
|
|
// Cubic Noise
|
|
FN_DECIMAL FastNoise::GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = SingleCubic(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleCubic(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SingleCubic(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleCubic(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleCubic(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleCubic(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetCubic(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
return SingleCubic(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
const FN_DECIMAL CUBIC_3D_BOUNDING = 1 / (FN_DECIMAL(1.5) * FN_DECIMAL(1.5) * FN_DECIMAL(1.5));
|
|
|
|
FN_DECIMAL FastNoise::SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
int x1 = FastFloor(x);
|
|
int y1 = FastFloor(y);
|
|
int z1 = FastFloor(z);
|
|
|
|
int x0 = x1 - 1;
|
|
int y0 = y1 - 1;
|
|
int z0 = z1 - 1;
|
|
int x2 = x1 + 1;
|
|
int y2 = y1 + 1;
|
|
int z2 = z1 + 1;
|
|
int x3 = x1 + 2;
|
|
int y3 = y1 + 2;
|
|
int z3 = z1 + 2;
|
|
|
|
FN_DECIMAL xs = x - (FN_DECIMAL)x1;
|
|
FN_DECIMAL ys = y - (FN_DECIMAL)y1;
|
|
FN_DECIMAL zs = z - (FN_DECIMAL)z1;
|
|
|
|
return CubicLerp(
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z0), ValCoord3DFast(offset, x1, y0, z0), ValCoord3DFast(offset, x2, y0, z0), ValCoord3DFast(offset, x3, y0, z0), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z0), ValCoord3DFast(offset, x1, y1, z0), ValCoord3DFast(offset, x2, y1, z0), ValCoord3DFast(offset, x3, y1, z0), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z0), ValCoord3DFast(offset, x1, y2, z0), ValCoord3DFast(offset, x2, y2, z0), ValCoord3DFast(offset, x3, y2, z0), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z0), ValCoord3DFast(offset, x1, y3, z0), ValCoord3DFast(offset, x2, y3, z0), ValCoord3DFast(offset, x3, y3, z0), xs),
|
|
ys),
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z1), ValCoord3DFast(offset, x1, y0, z1), ValCoord3DFast(offset, x2, y0, z1), ValCoord3DFast(offset, x3, y0, z1), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z1), ValCoord3DFast(offset, x1, y1, z1), ValCoord3DFast(offset, x2, y1, z1), ValCoord3DFast(offset, x3, y1, z1), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z1), ValCoord3DFast(offset, x1, y2, z1), ValCoord3DFast(offset, x2, y2, z1), ValCoord3DFast(offset, x3, y2, z1), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z1), ValCoord3DFast(offset, x1, y3, z1), ValCoord3DFast(offset, x2, y3, z1), ValCoord3DFast(offset, x3, y3, z1), xs),
|
|
ys),
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z2), ValCoord3DFast(offset, x1, y0, z2), ValCoord3DFast(offset, x2, y0, z2), ValCoord3DFast(offset, x3, y0, z2), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z2), ValCoord3DFast(offset, x1, y1, z2), ValCoord3DFast(offset, x2, y1, z2), ValCoord3DFast(offset, x3, y1, z2), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z2), ValCoord3DFast(offset, x1, y2, z2), ValCoord3DFast(offset, x2, y2, z2), ValCoord3DFast(offset, x3, y2, z2), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z2), ValCoord3DFast(offset, x1, y3, z2), ValCoord3DFast(offset, x2, y3, z2), ValCoord3DFast(offset, x3, y3, z2), xs),
|
|
ys),
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z3), ValCoord3DFast(offset, x1, y0, z3), ValCoord3DFast(offset, x2, y0, z3), ValCoord3DFast(offset, x3, y0, z3), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z3), ValCoord3DFast(offset, x1, y1, z3), ValCoord3DFast(offset, x2, y1, z3), ValCoord3DFast(offset, x3, y1, z3), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z3), ValCoord3DFast(offset, x1, y2, z3), ValCoord3DFast(offset, x2, y2, z3), ValCoord3DFast(offset, x3, y2, z3), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z3), ValCoord3DFast(offset, x1, y3, z3), ValCoord3DFast(offset, x2, y3, z3), ValCoord3DFast(offset, x3, y3, z3), xs),
|
|
ys),
|
|
zs) * CUBIC_3D_BOUNDING;
|
|
}
|
|
|
|
|
|
FN_DECIMAL FastNoise::GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType)
|
|
{
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = SingleCubic(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleCubic(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = FastAbs(SingleCubic(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleCubic(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleCubic(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleCubic(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetCubic(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
return SingleCubic(0, x, y);
|
|
}
|
|
|
|
const FN_DECIMAL CUBIC_2D_BOUNDING = 1 / (FN_DECIMAL(1.5) * FN_DECIMAL(1.5));
|
|
|
|
FN_DECIMAL FastNoise::SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
int x1 = FastFloor(x);
|
|
int y1 = FastFloor(y);
|
|
|
|
int x0 = x1 - 1;
|
|
int y0 = y1 - 1;
|
|
int x2 = x1 + 1;
|
|
int y2 = y1 + 1;
|
|
int x3 = x1 + 2;
|
|
int y3 = y1 + 2;
|
|
|
|
FN_DECIMAL xs = x - (FN_DECIMAL)x1;
|
|
FN_DECIMAL ys = y - (FN_DECIMAL)y1;
|
|
|
|
return CubicLerp(
|
|
CubicLerp(ValCoord2DFast(offset, x0, y0), ValCoord2DFast(offset, x1, y0), ValCoord2DFast(offset, x2, y0), ValCoord2DFast(offset, x3, y0), xs),
|
|
CubicLerp(ValCoord2DFast(offset, x0, y1), ValCoord2DFast(offset, x1, y1), ValCoord2DFast(offset, x2, y1), ValCoord2DFast(offset, x3, y1), xs),
|
|
CubicLerp(ValCoord2DFast(offset, x0, y2), ValCoord2DFast(offset, x1, y2), ValCoord2DFast(offset, x2, y2), ValCoord2DFast(offset, x3, y2), xs),
|
|
CubicLerp(ValCoord2DFast(offset, x0, y3), ValCoord2DFast(offset, x1, y3), ValCoord2DFast(offset, x2, y3), ValCoord2DFast(offset, x3, y3), xs),
|
|
ys) * CUBIC_2D_BOUNDING;
|
|
}
|
|
|
|
// Cellular Noise
|
|
FN_DECIMAL FastNoise::GetCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y, z);
|
|
default:
|
|
return SingleCellular2Edge(x, y, z);
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
int zr = FastRound(z);
|
|
|
|
FN_DECIMAL distance = 999999;
|
|
int xc, yc, zc;
|
|
|
|
switch (m_cellularDistanceFunction)
|
|
{
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++)
|
|
{
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ;
|
|
|
|
if (newDistance < distance)
|
|
{
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
zc = zi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++)
|
|
{
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ);
|
|
|
|
if (newDistance < distance)
|
|
{
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
zc = zi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++)
|
|
{
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ);
|
|
|
|
if (newDistance < distance)
|
|
{
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
zc = zi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
unsigned char lutPos;
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case CellValue:
|
|
return ValCoord3D(m_seed, xc, yc, zc);
|
|
|
|
case NoiseLookup:
|
|
assert(m_cellularNoiseLookup);
|
|
|
|
lutPos = Index3D_256(0, xc, yc, zc);
|
|
return m_cellularNoiseLookup->GetNoise(xc + CELL_3D_X[lutPos] * m_cellularJitter, yc + CELL_3D_Y[lutPos] * m_cellularJitter, zc + CELL_3D_Z[lutPos] * m_cellularJitter);
|
|
|
|
case Distance:
|
|
return distance;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const
|
|
{
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
int zr = FastRound(z);
|
|
|
|
FN_DECIMAL distance[FN_CELLULAR_INDEX_MAX+1] = { 999999,999999,999999,999999 };
|
|
|
|
switch (m_cellularDistanceFunction)
|
|
{
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++)
|
|
{
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ;
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++)
|
|
{
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++)
|
|
{
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case Distance2:
|
|
return distance[m_cellularDistanceIndex1];
|
|
case Distance2Add:
|
|
return distance[m_cellularDistanceIndex1] + distance[m_cellularDistanceIndex0];
|
|
case Distance2Sub:
|
|
return distance[m_cellularDistanceIndex1] - distance[m_cellularDistanceIndex0];
|
|
case Distance2Mul:
|
|
return distance[m_cellularDistanceIndex1] * distance[m_cellularDistanceIndex0];
|
|
case Distance2Div:
|
|
return distance[m_cellularDistanceIndex0] / distance[m_cellularDistanceIndex1];
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetCellular(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y);
|
|
default:
|
|
return SingleCellular2Edge(x, y);
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
|
|
FN_DECIMAL distance = 999999;
|
|
int xc, yc;
|
|
|
|
switch (m_cellularDistanceFunction)
|
|
{
|
|
default:
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY;
|
|
|
|
if (newDistance < distance)
|
|
{
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY));
|
|
|
|
if (newDistance < distance)
|
|
{
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY)) + (vecX * vecX + vecY * vecY);
|
|
|
|
if (newDistance < distance)
|
|
{
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
unsigned char lutPos;
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case CellValue:
|
|
return ValCoord2D(m_seed, xc, yc);
|
|
|
|
case NoiseLookup:
|
|
assert(m_cellularNoiseLookup);
|
|
|
|
lutPos = Index2D_256(0, xc, yc);
|
|
return m_cellularNoiseLookup->GetNoise(xc + CELL_2D_X[lutPos] * m_cellularJitter, yc + CELL_2D_Y[lutPos] * m_cellularJitter);
|
|
|
|
case Distance:
|
|
return distance;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y) const
|
|
{
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
|
|
FN_DECIMAL distance[FN_CELLULAR_INDEX_MAX + 1] = { 999999,999999,999999,999999 };
|
|
|
|
switch (m_cellularDistanceFunction)
|
|
{
|
|
default:
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY;
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++)
|
|
{
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++)
|
|
{
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY)) + (vecX * vecX + vecY * vecY);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (m_cellularReturnType)
|
|
{
|
|
case Distance2:
|
|
return distance[m_cellularDistanceIndex1];
|
|
case Distance2Add:
|
|
return distance[m_cellularDistanceIndex1] + distance[m_cellularDistanceIndex0];
|
|
case Distance2Sub:
|
|
return distance[m_cellularDistanceIndex1] - distance[m_cellularDistanceIndex0];
|
|
case Distance2Mul:
|
|
return distance[m_cellularDistanceIndex1] * distance[m_cellularDistanceIndex0];
|
|
case Distance2Div:
|
|
return distance[m_cellularDistanceIndex0] / distance[m_cellularDistanceIndex1];
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void FastNoise::GradientPerturb(FN_DECIMAL& x, FN_DECIMAL& y, FN_DECIMAL& z) const
|
|
{
|
|
SingleGradientPerturb(0, m_gradientPerturbAmp, m_frequency, x, y, z);
|
|
}
|
|
|
|
void FastNoise::GradientPerturbFractal(FN_DECIMAL& x, FN_DECIMAL& y, FN_DECIMAL& z) const
|
|
{
|
|
FN_DECIMAL amp = m_gradientPerturbAmp * m_fractalBounding;
|
|
FN_DECIMAL freq = m_frequency;
|
|
int i = 0;
|
|
|
|
SingleGradientPerturb(m_perm[0], amp, m_frequency, x, y, z);
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
freq *= m_lacunarity;
|
|
amp *= m_gain;
|
|
SingleGradientPerturb(m_perm[i], amp, freq, x, y, z);
|
|
}
|
|
}
|
|
|
|
void FastNoise::SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL& x, FN_DECIMAL& y, FN_DECIMAL& z) const
|
|
{
|
|
FN_DECIMAL xf = x * frequency;
|
|
FN_DECIMAL yf = y * frequency;
|
|
FN_DECIMAL zf = z * frequency;
|
|
|
|
int x0 = FastFloor(xf);
|
|
int y0 = FastFloor(yf);
|
|
int z0 = FastFloor(zf);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
int z1 = z0 + 1;
|
|
|
|
FN_DECIMAL xs, ys, zs;
|
|
switch (m_interp)
|
|
{
|
|
default:
|
|
case Linear:
|
|
xs = xf - (FN_DECIMAL)x0;
|
|
ys = yf - (FN_DECIMAL)y0;
|
|
zs = zf - (FN_DECIMAL)z0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(yf - (FN_DECIMAL)y0);
|
|
zs = InterpHermiteFunc(zf - (FN_DECIMAL)z0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(yf - (FN_DECIMAL)y0);
|
|
zs = InterpQuinticFunc(zf - (FN_DECIMAL)z0);
|
|
break;
|
|
}
|
|
|
|
int lutPos0 = Index3D_256(offset, x0, y0, z0);
|
|
int lutPos1 = Index3D_256(offset, x1, y0, z0);
|
|
|
|
FN_DECIMAL lx0x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
FN_DECIMAL ly0x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
FN_DECIMAL lz0x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
lutPos0 = Index3D_256(offset, x0, y1, z0);
|
|
lutPos1 = Index3D_256(offset, x1, y1, z0);
|
|
|
|
FN_DECIMAL lx1x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
FN_DECIMAL ly1x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
FN_DECIMAL lz1x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
FN_DECIMAL lx0y = Lerp(lx0x, lx1x, ys);
|
|
FN_DECIMAL ly0y = Lerp(ly0x, ly1x, ys);
|
|
FN_DECIMAL lz0y = Lerp(lz0x, lz1x, ys);
|
|
|
|
lutPos0 = Index3D_256(offset, x0, y0, z1);
|
|
lutPos1 = Index3D_256(offset, x1, y0, z1);
|
|
|
|
lx0x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
ly0x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
lz0x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
lutPos0 = Index3D_256(offset, x0, y1, z1);
|
|
lutPos1 = Index3D_256(offset, x1, y1, z1);
|
|
|
|
lx1x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
ly1x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
lz1x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
x += Lerp(lx0y, Lerp(lx0x, lx1x, ys), zs) * warpAmp;
|
|
y += Lerp(ly0y, Lerp(ly0x, ly1x, ys), zs) * warpAmp;
|
|
z += Lerp(lz0y, Lerp(lz0x, lz1x, ys), zs) * warpAmp;
|
|
}
|
|
|
|
void FastNoise::GradientPerturb(FN_DECIMAL& x, FN_DECIMAL& y) const
|
|
{
|
|
SingleGradientPerturb(0, m_gradientPerturbAmp, m_frequency, x, y);
|
|
}
|
|
|
|
void FastNoise::GradientPerturbFractal(FN_DECIMAL& x, FN_DECIMAL& y) const
|
|
{
|
|
FN_DECIMAL amp = m_gradientPerturbAmp * m_fractalBounding;
|
|
FN_DECIMAL freq = m_frequency;
|
|
int i = 0;
|
|
|
|
SingleGradientPerturb(m_perm[0], amp, m_frequency, x, y);
|
|
|
|
while (++i < m_octaves)
|
|
{
|
|
freq *= m_lacunarity;
|
|
amp *= m_gain;
|
|
SingleGradientPerturb(m_perm[i], amp, freq, x, y);
|
|
}
|
|
}
|
|
|
|
void FastNoise::SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL& x, FN_DECIMAL& y) const
|
|
{
|
|
FN_DECIMAL xf = x * frequency;
|
|
FN_DECIMAL yf = y * frequency;
|
|
|
|
int x0 = FastFloor(xf);
|
|
int y0 = FastFloor(yf);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
|
|
FN_DECIMAL xs, ys;
|
|
switch (m_interp)
|
|
{
|
|
default:
|
|
case Linear:
|
|
xs = xf - (FN_DECIMAL)x0;
|
|
ys = yf - (FN_DECIMAL)y0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(yf - (FN_DECIMAL)y0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(yf - (FN_DECIMAL)y0);
|
|
break;
|
|
}
|
|
|
|
int lutPos0 = Index2D_256(offset, x0, y0);
|
|
int lutPos1 = Index2D_256(offset, x1, y0);
|
|
|
|
FN_DECIMAL lx0x = Lerp(CELL_2D_X[lutPos0], CELL_2D_X[lutPos1], xs);
|
|
FN_DECIMAL ly0x = Lerp(CELL_2D_Y[lutPos0], CELL_2D_Y[lutPos1], xs);
|
|
|
|
lutPos0 = Index2D_256(offset, x0, y1);
|
|
lutPos1 = Index2D_256(offset, x1, y1);
|
|
|
|
FN_DECIMAL lx1x = Lerp(CELL_2D_X[lutPos0], CELL_2D_X[lutPos1], xs);
|
|
FN_DECIMAL ly1x = Lerp(CELL_2D_Y[lutPos0], CELL_2D_Y[lutPos1], xs);
|
|
|
|
x += Lerp(lx0x, lx1x, ys) * warpAmp;
|
|
y += Lerp(ly0x, ly1x, ys) * warpAmp;
|
|
}
|
|
|
|
} // namespace fastnoise
|
|
|
|
|
|
|
|
#if VERSION_MAJOR >= 4
|
|
|
|
#pragma GCC diagnostic pop
|
|
#endif |