#ifndef QUATERNION_H #define QUATERNION_H /*************************************************************************/ /* quat.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/math/math_defs.h" #include "core/math/math_funcs.h" #include "core/math/vector3.h" #include "core/ustring.h" class _NO_DISCARD_CLASS_ Quaternion { public: real_t x, y, z, w; _FORCE_INLINE_ real_t length_squared() const; bool is_equal_approx(const Quaternion &p_quat) const; real_t length() const; void normalize(); Quaternion normalized() const; bool is_normalized() const; Quaternion inverse() const; Quaternion log() const; Quaternion exp() const; _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; real_t angle_to(const Quaternion &p_to) const; void set_euler_xyz(const Vector3 &p_euler); Vector3 get_euler_xyz() const; void set_euler_yxz(const Vector3 &p_euler); Vector3 get_euler_yxz() const; void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }; Vector3 get_euler() const { return get_euler_yxz(); }; Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; Vector3 get_axis() const; float get_angle() const; void set_axis_angle(const Vector3 &axis, const real_t &angle); _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); real_t r = ((real_t)1) / Math::sqrt(1 - w * w); r_axis.x = x * r; r_axis.y = y * r; r_axis.z = z * r; } void operator*=(const Quaternion &p_q); Quaternion operator*(const Quaternion &p_q) const; Quaternion operator*(const Vector3 &v) const { return Quaternion(w * v.x + y * v.z - z * v.y, w * v.y + z * v.x - x * v.z, w * v.z + x * v.y - y * v.x, -x * v.x - y * v.y - z * v.z); } _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized."); #endif Vector3 u(x, y, z); Vector3 uv = u.cross(v); return v + ((uv * w) + u.cross(uv)) * ((real_t)2); } _FORCE_INLINE_ void operator+=(const Quaternion &p_q); _FORCE_INLINE_ void operator-=(const Quaternion &p_q); _FORCE_INLINE_ void operator*=(const real_t &s); _FORCE_INLINE_ void operator/=(const real_t &s); _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const; _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const; _FORCE_INLINE_ Quaternion operator-() const; _FORCE_INLINE_ Quaternion operator*(const real_t &s) const; _FORCE_INLINE_ Quaternion operator/(const real_t &s) const; _FORCE_INLINE_ bool operator==(const Quaternion &p_quat) const; _FORCE_INLINE_ bool operator!=(const Quaternion &p_quat) const; operator String() const; inline void set(real_t p_x, real_t p_y, real_t p_z, real_t p_w) { x = p_x; y = p_y; z = p_z; w = p_w; } inline Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : x(p_x), y(p_y), z(p_z), w(p_w) { } Quaternion(const Vector3 &axis, const real_t &angle) { set_axis_angle(axis, angle); } Quaternion(const Vector3 &euler) { set_euler(euler); } Quaternion(const Quaternion &p_q) : x(p_q.x), y(p_q.y), z(p_q.z), w(p_q.w) { } Quaternion &operator=(const Quaternion &p_q) { x = p_q.x; y = p_q.y; z = p_q.z; w = p_q.w; return *this; } Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc { Vector3 c = v0.cross(v1); real_t d = v0.dot(v1); if (d < -1 + (real_t)CMP_EPSILON) { x = 0; y = 1; z = 0; w = 0; } else { real_t s = Math::sqrt((1 + d) * 2); real_t rs = 1 / s; x = c.x * rs; y = c.y * rs; z = c.z * rs; w = s * 0.5f; } } inline Quaternion() : x(0), y(0), z(0), w(1) { } }; real_t Quaternion::dot(const Quaternion &p_q) const { return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w; } real_t Quaternion::length_squared() const { return dot(*this); } void Quaternion::operator+=(const Quaternion &p_q) { x += p_q.x; y += p_q.y; z += p_q.z; w += p_q.w; } void Quaternion::operator-=(const Quaternion &p_q) { x -= p_q.x; y -= p_q.y; z -= p_q.z; w -= p_q.w; } void Quaternion::operator*=(const real_t &s) { x *= s; y *= s; z *= s; w *= s; } void Quaternion::operator/=(const real_t &s) { *this *= 1 / s; } Quaternion Quaternion::operator+(const Quaternion &q2) const { const Quaternion &q1 = *this; return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w); } Quaternion Quaternion::operator-(const Quaternion &q2) const { const Quaternion &q1 = *this; return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w); } Quaternion Quaternion::operator-() const { const Quaternion &q2 = *this; return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w); } Quaternion Quaternion::operator*(const real_t &s) const { return Quaternion(x * s, y * s, z * s, w * s); } Quaternion Quaternion::operator/(const real_t &s) const { return *this * (1 / s); } bool Quaternion::operator==(const Quaternion &p_quat) const { return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w; } bool Quaternion::operator!=(const Quaternion &p_quat) const { return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w; } #endif