<?xml version="1.0" encoding="UTF-8" ?> <class name="Transform2D" version="3.8"> <brief_description> 2D transformation (2×3 matrix). </brief_description> <description> 2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin]. For more information, read the "Matrices and transforms" documentation article. </description> <tutorials> <link title="Math tutorial index">$DOCS_URL/tutorials/math/index.html</link> <link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link> <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link> <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link> </tutorials> <methods> <method name="Transform2D"> <return type="Transform2D" /> <argument index="0" name="from" type="Transform" /> <description> Constructs the transform from a 3D [Transform]. </description> </method> <method name="Transform2D"> <return type="Transform2D" /> <argument index="0" name="x_axis" type="Vector2" /> <argument index="1" name="y_axis" type="Vector2" /> <argument index="2" name="origin" type="Vector2" /> <description> Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors). </description> </method> <method name="Transform2D"> <return type="Transform2D" /> <argument index="0" name="rotation" type="float" /> <argument index="1" name="position" type="Vector2" /> <description> Constructs the transform from a given angle (in radians) and position. </description> </method> <method name="affine_inverse"> <return type="Transform2D" /> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation. </description> </method> <method name="affine_invert"> <description> </description> </method> <method name="basis_determinant"> <return type="float" /> <description> </description> </method> <method name="basis_scaled"> <return type="Transform2D" /> <argument index="0" name="scale" type="Vector2" /> <description> </description> </method> <method name="basis_xform"> <return type="Vector2" /> <argument index="0" name="v" type="Vector2" /> <description> Returns a vector transformed (multiplied) by the basis matrix. This method does not account for translation (the origin vector). </description> </method> <method name="basis_xform_inv"> <return type="Vector2" /> <argument index="0" name="v" type="Vector2" /> <description> Returns a vector transformed (multiplied) by the inverse basis matrix. This method does not account for translation (the origin vector). </description> </method> <method name="get_axis"> <return type="Vector2" /> <argument index="0" name="axis" type="int" /> <description> </description> </method> <method name="get_column"> <return type="Vector2" /> <argument index="0" name="colum" type="int" /> <description> </description> </method> <method name="get_origin"> <return type="Vector2" /> <description> Returns the transform's origin (translation). </description> </method> <method name="get_rotation"> <return type="float" /> <description> Returns the transform's rotation (in radians). </description> </method> <method name="get_scale"> <return type="Vector2" /> <description> Returns the scale. </description> </method> <method name="get_skew"> <return type="float" /> <description> </description> </method> <method name="interpolate_with"> <return type="Transform2D" /> <argument index="0" name="transform" type="Transform2D" /> <argument index="1" name="weight" type="float" /> <description> Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0). </description> </method> <method name="inverse"> <return type="Transform2D" /> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling). </description> </method> <method name="invert"> <description> </description> </method> <method name="is_equal_approx"> <return type="bool" /> <argument index="0" name="transform" type="Transform2D" /> <description> Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component. </description> </method> <method name="looking_at"> <return type="Transform2D" /> <argument index="0" name="target" type="Vector2" /> <description> </description> </method> <method name="orthonormalize"> <description> </description> </method> <method name="orthonormalized"> <return type="Transform2D" /> <description> Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1). </description> </method> <method name="rotate"> <argument index="0" name="phi" type="float" /> <description> </description> </method> <method name="rotated"> <return type="Transform2D" /> <argument index="0" name="angle" type="float" /> <description> Returns a copy of the transform rotated by the given [code]angle[/code] (in radians). This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="rotated_local"> <return type="Transform2D" /> <argument index="0" name="angle" type="float" /> <description> Returns a copy of the transform rotated by the given [code]angle[/code] (in radians). This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code]. This can be seen as transforming with respect to the local frame. </description> </method> <method name="scale"> <argument index="0" name="scale" type="Vector2" /> <description> </description> </method> <method name="scale_basis"> <argument index="0" name="scale" type="Vector2" /> <description> </description> </method> <method name="scaled"> <return type="Transform2D" /> <argument index="0" name="scale" type="Vector2" /> <description> Returns a copy of the transform scaled by the given [code]scale[/code] factor. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="scaled_local"> <return type="Transform2D" /> <argument index="0" name="scale" type="Vector2" /> <description> Returns a copy of the transform scaled by the given [code]scale[/code] factor. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code]. This can be seen as transforming with respect to the local frame. </description> </method> <method name="set_axis"> <argument index="0" name="axis" type="int" /> <argument index="1" name="vec" type="Vector2" /> <description> </description> </method> <method name="set_column"> <argument index="0" name="colum" type="float" /> <description> </description> </method> <method name="set_origin"> <argument index="0" name="origin" type="float" /> <description> </description> </method> <method name="set_rotation_and_scale"> <argument index="0" name="rot" type="float" /> <argument index="1" name="scale" type="Vector2" /> <description> </description> </method> <method name="set_rotation_scale_and_skew"> <argument index="0" name="rot" type="float" /> <argument index="1" name="scale" type="Vector2" /> <argument index="2" name="skew" type="float" /> <description> </description> </method> <method name="set_scale"> <argument index="0" name="scale" type="float" /> <description> </description> </method> <method name="set_skew"> <argument index="0" name="angle" type="float" /> <description> </description> </method> <method name="tdotx"> <return type="float" /> <argument index="0" name="v" type="Vector2" /> <description> </description> </method> <method name="tdoty"> <return type="float" /> <argument index="0" name="v" type="Vector2" /> <description> </description> </method> <method name="translate_localr"> <argument index="0" name="tx" type="float" /> <argument index="1" name="ty" type="float" /> <description> </description> </method> <method name="translate_localv"> <argument index="0" name="translation" type="Vector2" /> <description> </description> </method> <method name="translated"> <return type="Transform2D" /> <argument index="0" name="offset" type="Vector2" /> <description> Returns a copy of the transform translated by the given [code]offset[/code]. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="translated_local"> <return type="Transform2D" /> <argument index="0" name="offset" type="Vector2" /> <description> Returns a copy of the transform translated by the given [code]offset[/code]. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code]. This can be seen as transforming with respect to the local frame. </description> </method> <method name="translater"> <argument index="0" name="tx" type="float" /> <argument index="1" name="ty" type="float" /> <description> </description> </method> <method name="translatev"> <argument index="0" name="origin" type="Vector2" /> <description> </description> </method> <method name="untranslated"> <return type="Transform2D" /> <description> </description> </method> <method name="xform"> <return type="Variant" /> <argument index="0" name="v" type="Variant" /> <description> Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform. </description> </method> <method name="xform_inv"> <return type="Variant" /> <argument index="0" name="v" type="Variant" /> <description> Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method. </description> </method> </methods> <members> <member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )"> The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation. </member> <member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )"> The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code]. </member> <member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )"> The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code]. </member> </members> <constants> <constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )"> The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation. </constant> <constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )"> The [Transform2D] that will flip something along the X axis. </constant> <constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )"> The [Transform2D] that will flip something along the Y axis. </constant> </constants> </class>