/*************************************************************************/ /* transform.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "transform.h" #include "core/math/math_funcs.h" #include "core/print_string.h" void Transform::invert() { basis.transpose(); origin = basis.xform(-origin); } Transform Transform::inverse() const { // FIXME: this function assumes the basis is a rotation matrix, with no scaling. // Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. Transform ret = *this; ret.invert(); return ret; } void Transform::affine_invert() { basis.invert(); origin = basis.xform(-origin); } Transform Transform::affine_inverse() const { Transform ret = *this; ret.affine_invert(); return ret; } Transform Transform::rotated(const Vector3 &p_axis, real_t p_angle) const { // Equivalent to left multiplication Basis p_basis(p_axis, p_angle); return Transform(p_basis * basis, p_basis.xform(origin)); } Transform Transform::rotated_local(const Vector3 &p_axis, real_t p_angle) const { // Equivalent to right multiplication Basis p_basis(p_axis, p_angle); return Transform(basis * p_basis, origin); } void Transform::rotate(const Vector3 &p_axis, real_t p_phi) { *this = rotated(p_axis, p_phi); } void Transform::rotate_local(const Vector3 &p_axis, real_t p_phi) { *this = rotated_local(p_axis, p_phi); } void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) { basis.rotate(p_axis, p_phi); } void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) { #ifdef MATH_CHECKS ERR_FAIL_COND(p_eye == p_target); ERR_FAIL_COND(p_up.length() == 0); #endif // Reference: MESA source code Vector3 v_x, v_y, v_z; /* Make rotation matrix */ /* Z vector */ v_z = p_eye - p_target; v_z.normalize(); v_y = p_up; v_x = v_y.cross(v_z); #ifdef MATH_CHECKS ERR_FAIL_COND(v_x.length() == 0); #endif /* Recompute Y = Z cross X */ v_y = v_z.cross(v_x); v_x.normalize(); v_y.normalize(); basis.set(v_x, v_y, v_z); origin = p_eye; } Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const { Transform t = *this; t.set_look_at(origin, p_target, p_up); return t; } void Transform::scale(const Vector3 &p_scale) { basis.scale(p_scale); origin *= p_scale; } Transform Transform::scaled(const Vector3 &p_scale) const { // Equivalent to left multiplication return Transform(basis.scaled(p_scale), origin * p_scale); } Transform Transform::scaled_local(const Vector3 &p_scale) const { // Equivalent to right multiplication return Transform(basis.scaled_local(p_scale), origin); } void Transform::scale_basis(const Vector3 &p_scale) { basis.scale(p_scale); } void Transform::translate_local(real_t p_tx, real_t p_ty, real_t p_tz) { translate_local(Vector3(p_tx, p_ty, p_tz)); } void Transform::translate_local(const Vector3 &p_translation) { for (int i = 0; i < 3; i++) { origin[i] += basis[i].dot(p_translation); } } //Transform Transform::translated(const Vector3 &p_translation) const { // // Equivalent to left multiplication // return Transform(basis, origin + p_translation); //} Transform Transform::translated_local(const Vector3 &p_translation) const { // Equivalent to right multiplication return Transform(basis, origin + basis.xform(p_translation)); } void Transform::orthonormalize() { basis.orthonormalize(); } Transform Transform::orthonormalized() const { Transform _copy = *this; _copy.orthonormalize(); return _copy; } void Transform::orthogonalize() { basis.orthogonalize(); } Transform Transform::orthogonalized() const { Transform _copy = *this; _copy.orthogonalize(); return _copy; } bool Transform::is_equal_approx(const Transform &p_transform) const { return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin); } bool Transform::operator==(const Transform &p_transform) const { return (basis == p_transform.basis && origin == p_transform.origin); } bool Transform::operator!=(const Transform &p_transform) const { return (basis != p_transform.basis || origin != p_transform.origin); } void Transform::operator*=(const Transform &p_transform) { origin = xform(p_transform.origin); basis *= p_transform.basis; } Transform Transform::operator*(const Transform &p_transform) const { Transform t = *this; t *= p_transform; return t; } void Transform::operator*=(const real_t p_val) { origin *= p_val; basis *= p_val; } Transform Transform::operator*(const real_t p_val) const { Transform ret(*this); ret *= p_val; return ret; } Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const { /* not sure if very "efficient" but good enough? */ Vector3 src_scale = basis.get_scale(); Quaternion src_rot = basis.get_rotation_quaternion(); Vector3 src_loc = origin; Vector3 dst_scale = p_transform.basis.get_scale(); Quaternion dst_rot = p_transform.basis.get_rotation_quaternion(); Vector3 dst_loc = p_transform.origin; Transform interp; interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.linear_interpolate(dst_scale, p_c)); interp.origin = src_loc.linear_interpolate(dst_loc, p_c); return interp; } Transform::operator String() const { return "[X: " + basis.get_column(0).operator String() + ", Y: " + basis.get_column(1).operator String() + ", Z: " + basis.get_column(2).operator String() + ", O: " + origin.operator String() + "]"; } Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) : basis(p_basis), origin(p_origin) { } Transform::Transform(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) { basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz); origin = Vector3(ox, oy, oz); } Transform::Transform(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) : origin(p_origin) { basis.set_column(0, p_x); basis.set_column(1, p_y); basis.set_column(2, p_z); }