[b]Note:[/b] In a boolean context, a Vector3 will evaluate to [code]false[/code] if it's equal to [code]Vector3(0, 0, 0)[/code]. Otherwise, a Vector3 will always evaluate to [code]true[/code].
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<methodname="angle_to">
<returntype="float"/>
<argumentindex="0"name="to"type="Vector3"/>
<description>
Returns the unsigned minimum angle to the given vector, in radians.
</description>
</method>
<methodname="bounce">
<returntype="Vector3"/>
<argumentindex="0"name="n"type="Vector3"/>
<description>
Returns the vector "bounced off" from a plane defined by the given normal.
</description>
</method>
<methodname="ceil">
<returntype="Vector3"/>
<description>
Returns a new vector with all components rounded up (towards positive infinity).
</description>
</method>
<methodname="cross">
<returntype="Vector3"/>
<argumentindex="0"name="b"type="Vector3"/>
<description>
Returns the cross product of this vector and [code]b[/code].
</description>
</method>
<methodname="cubic_interpolate">
<returntype="Vector3"/>
<argumentindex="0"name="b"type="Vector3"/>
<argumentindex="1"name="pre_a"type="Vector3"/>
<argumentindex="2"name="post_b"type="Vector3"/>
<argumentindex="3"name="weight"type="float"/>
<description>
Performs a cubic interpolation between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<methodname="direction_to">
<returntype="Vector3"/>
<argumentindex="0"name="b"type="Vector3"/>
<description>
Returns the normalized vector pointing from this vector to [code]b[/code]. This is equivalent to using [code](b - a).normalized()[/code].
</description>
</method>
<methodname="distance_squared_to">
<returntype="float"/>
<argumentindex="0"name="b"type="Vector3"/>
<description>
Returns the squared distance between this vector and [code]b[/code].
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<methodname="distance_to">
<returntype="float"/>
<argumentindex="0"name="b"type="Vector3"/>
<description>
Returns the distance between this vector and [code]b[/code].
</description>
</method>
<methodname="dot">
<returntype="float"/>
<argumentindex="0"name="b"type="Vector3"/>
<description>
Returns the dot product of this vector and [code]b[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
</description>
</method>
<methodname="floor">
<returntype="Vector3"/>
<description>
Returns a new vector with all components rounded down (towards negative infinity).
</description>
</method>
<methodname="inverse">
<returntype="Vector3"/>
<description>
Returns the inverse of the vector. This is the same as [code]Vector3( 1.0 / v.x, 1.0 / v.y, 1.0 / v.z )[/code].
</description>
</method>
<methodname="is_equal_approx">
<returntype="bool"/>
<argumentindex="0"name="v"type="Vector3"/>
<description>
Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component.
</description>
</method>
<methodname="is_normalized">
<returntype="bool"/>
<description>
Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
</description>
</method>
<methodname="length">
<returntype="float"/>
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<methodname="length_squared">
<returntype="float"/>
<description>
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
Returns the vector with a maximum length by limiting its length to [code]length[/code].
</description>
</method>
<methodname="linear_interpolate">
<returntype="Vector3"/>
<argumentindex="0"name="to"type="Vector3"/>
<argumentindex="1"name="weight"type="float"/>
<description>
Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]t[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<methodname="max_axis">
<returntype="int"/>
<description>
Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<methodname="min_axis">
<returntype="int"/>
<description>
Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
</description>
</method>
<methodname="move_toward">
<returntype="Vector3"/>
<argumentindex="0"name="to"type="Vector3"/>
<argumentindex="1"name="delta"type="float"/>
<description>
Returns a new vector moved toward [code]to[/code] by the fixed [code]delta[/code] amount. Will not go past the final value.
</description>
</method>
<methodname="normalized">
<returntype="Vector3"/>
<description>
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
</description>
</method>
<methodname="outer">
<returntype="Basis"/>
<argumentindex="0"name="b"type="Vector3"/>
<description>
Returns the outer product with [code]b[/code].
</description>
</method>
<methodname="posmod">
<returntype="Vector3"/>
<argumentindex="0"name="mod"type="float"/>
<description>
Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]mod[/code].
</description>
</method>
<methodname="posmodv">
<returntype="Vector3"/>
<argumentindex="0"name="modv"type="Vector3"/>
<description>
Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]modv[/code]'s components.
</description>
</method>
<methodname="project">
<returntype="Vector3"/>
<argumentindex="0"name="b"type="Vector3"/>
<description>
Returns this vector projected onto the vector [code]b[/code].
</description>
</method>
<methodname="reflect">
<returntype="Vector3"/>
<argumentindex="0"name="n"type="Vector3"/>
<description>
Returns this vector reflected from a plane defined by the given normal.
</description>
</method>
<methodname="rotated">
<returntype="Vector3"/>
<argumentindex="0"name="axis"type="Vector3"/>
<argumentindex="1"name="phi"type="float"/>
<description>
Rotates this vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector.
</description>
</method>
<methodname="round">
<returntype="Vector3"/>
<description>
Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
</description>
</method>
<methodname="sign">
<returntype="Vector3"/>
<description>
Returns a new vector with each component set to one or negative one, depending on the signs of the components. If a component is zero, it returns positive one.
</description>
</method>
<methodname="signed_angle_to">
<returntype="float"/>
<argumentindex="0"name="to"type="Vector3"/>
<argumentindex="1"name="axis"type="Vector3"/>
<description>
Returns the signed angle to the given vector, in radians. The sign of the angle is positive in a counter-clockwise direction and negative in a clockwise direction when viewed from the side specified by the [code]axis[/code].
</description>
</method>
<methodname="slerp">
<returntype="Vector3"/>
<argumentindex="0"name="to"type="Vector3"/>
<argumentindex="1"name="weight"type="float"/>
<description>
Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
[b]Note:[/b] Both vectors must be normalized.
</description>
</method>
<methodname="slide">
<returntype="Vector3"/>
<argumentindex="0"name="n"type="Vector3"/>
<description>
Returns this vector slid along a plane defined by the given normal.
</description>
</method>
<methodname="snapped">
<returntype="Vector3"/>
<argumentindex="0"name="by"type="Vector3"/>
<description>
Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
</description>
</method>
<methodname="to_diagonal_matrix">
<returntype="Basis"/>
<description>
Returns a diagonal matrix with the vector as main diagonal.
This is equivalent to a Basis with no rotation or shearing and this vector's components set as the scale.