2022-03-15 13:29:32 +01:00
<?xml version="1.0" encoding="UTF-8" ?>
<class name= "Transform2D" version= "3.5" >
<brief_description >
2D transformation (2× 3 matrix).
</brief_description>
<description >
2× 3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials >
<link title= "Math tutorial index" > $DOCS_URL/tutorials/math/index.html</link>
<link title= "Matrices and transforms" > $DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title= "Matrix Transform Demo" > https://godotengine.org/asset-library/asset/584</link>
<link title= "2.5D Demo" > https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods >
<method name= "Transform2D" >
<return type= "Transform2D" />
<argument index= "0" name= "from" type= "Transform" />
<description >
Constructs the transform from a 3D [Transform].
</description>
</method>
<method name= "Transform2D" >
<return type= "Transform2D" />
<argument index= "0" name= "x_axis" type= "Vector2" />
<argument index= "1" name= "y_axis" type= "Vector2" />
<argument index= "2" name= "origin" type= "Vector2" />
<description >
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
</description>
</method>
<method name= "Transform2D" >
<return type= "Transform2D" />
<argument index= "0" name= "rotation" type= "float" />
<argument index= "1" name= "position" type= "Vector2" />
<description >
Constructs the transform from a given angle (in radians) and position.
</description>
</method>
<method name= "affine_inverse" >
<return type= "Transform2D" />
<description >
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name= "basis_xform" >
<return type= "Vector2" />
<argument index= "0" name= "v" type= "Vector2" />
<description >
Returns a vector transformed (multiplied) by the basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name= "basis_xform_inv" >
<return type= "Vector2" />
<argument index= "0" name= "v" type= "Vector2" />
<description >
Returns a vector transformed (multiplied) by the inverse basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name= "get_origin" >
<return type= "Vector2" />
<description >
Returns the transform's origin (translation).
</description>
</method>
<method name= "get_rotation" >
<return type= "float" />
<description >
Returns the transform's rotation (in radians).
</description>
</method>
<method name= "get_scale" >
<return type= "Vector2" />
<description >
Returns the scale.
</description>
</method>
<method name= "interpolate_with" >
<return type= "Transform2D" />
<argument index= "0" name= "transform" type= "Transform2D" />
<argument index= "1" name= "weight" type= "float" />
<description >
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name= "inverse" >
<return type= "Transform2D" />
<description >
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
<method name= "is_equal_approx" >
<return type= "bool" />
<argument index= "0" name= "transform" type= "Transform2D" />
<description >
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name= "orthonormalized" >
<return type= "Transform2D" />
<description >
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name= "rotated" >
<return type= "Transform2D" />
<argument index= "0" name= "phi" type= "float" />
<description >
2022-08-14 20:35:11 +02:00
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name= "rotated_local" qualifiers= "const" >
<return type= "Transform2D" />
<argument index= "0" name= "angle" type= "float" />
<description >
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "scaled" >
<return type= "Transform2D" />
<argument index= "0" name= "scale" type= "Vector2" />
<description >
2022-08-14 20:35:11 +02:00
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name= "scaled_local" qualifiers= "const" >
<return type= "Transform2D" />
<argument index= "0" name= "scale" type= "Vector2" />
<description >
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name= "translated" qualifiers= "const" >
<return type= "Transform2D" />
<argument index= "0" name= "offset" type= "Vector2" />
<description >
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
2022-03-15 13:29:32 +01:00
</description>
</method>
2022-08-14 20:35:11 +02:00
<method name= "translated_local" >
2022-03-15 13:29:32 +01:00
<return type= "Transform2D" />
<argument index= "0" name= "offset" type= "Vector2" />
<description >
2022-08-14 20:35:11 +02:00
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "xform" >
<return type= "Variant" />
<argument index= "0" name= "v" type= "Variant" />
<description >
Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
<method name= "xform_inv" >
<return type= "Variant" />
<argument index= "0" name= "v" type= "Variant" />
<description >
Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method.
</description>
</method>
</methods>
<members >
<member name= "origin" type= "Vector2" setter= "" getter= "" default= "Vector2( 0, 0 )" >
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
</member>
<member name= "x" type= "Vector2" setter= "" getter= "" default= "Vector2( 1, 0 )" >
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name= "y" type= "Vector2" setter= "" getter= "" default= "Vector2( 0, 1 )" >
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
</members>
<constants >
<constant name= "IDENTITY" value= "Transform2D( 1, 0, 0, 1, 0, 0 )" >
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name= "FLIP_X" value= "Transform2D( -1, 0, 0, 1, 0, 0 )" >
The [Transform2D] that will flip something along the X axis.
</constant>
<constant name= "FLIP_Y" value= "Transform2D( 1, 0, 0, -1, 0, 0 )" >
The [Transform2D] that will flip something along the Y axis.
</constant>
</constants>
</class>