2022-03-15 13:29:32 +01:00
/*************************************************************************/
/* basis.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
# include "basis.h"
# include "core/math/math_funcs.h"
# include "core/print_string.h"
# define cofac(row1, col1, row2, col2) \
( elements [ row1 ] [ col1 ] * elements [ row2 ] [ col2 ] - elements [ row1 ] [ col2 ] * elements [ row2 ] [ col1 ] )
void Basis : : from_z ( const Vector3 & p_z ) {
if ( Math : : abs ( p_z . z ) > ( real_t ) Math_SQRT12 ) {
// choose p in y-z plane
real_t a = p_z [ 1 ] * p_z [ 1 ] + p_z [ 2 ] * p_z [ 2 ] ;
real_t k = 1 / Math : : sqrt ( a ) ;
elements [ 0 ] = Vector3 ( 0 , - p_z [ 2 ] * k , p_z [ 1 ] * k ) ;
elements [ 1 ] = Vector3 ( a * k , - p_z [ 0 ] * elements [ 0 ] [ 2 ] , p_z [ 0 ] * elements [ 0 ] [ 1 ] ) ;
} else {
// choose p in x-y plane
real_t a = p_z . x * p_z . x + p_z . y * p_z . y ;
real_t k = 1 / Math : : sqrt ( a ) ;
elements [ 0 ] = Vector3 ( - p_z . y * k , p_z . x * k , 0 ) ;
elements [ 1 ] = Vector3 ( - p_z . z * elements [ 0 ] . y , p_z . z * elements [ 0 ] . x , a * k ) ;
}
elements [ 2 ] = p_z ;
}
void Basis : : invert ( ) {
real_t co [ 3 ] = {
cofac ( 1 , 1 , 2 , 2 ) , cofac ( 1 , 2 , 2 , 0 ) , cofac ( 1 , 0 , 2 , 1 )
} ;
real_t det = elements [ 0 ] [ 0 ] * co [ 0 ] +
elements [ 0 ] [ 1 ] * co [ 1 ] +
elements [ 0 ] [ 2 ] * co [ 2 ] ;
# ifdef MATH_CHECKS
ERR_FAIL_COND ( det = = 0 ) ;
# endif
real_t s = 1 / det ;
set ( co [ 0 ] * s , cofac ( 0 , 2 , 2 , 1 ) * s , cofac ( 0 , 1 , 1 , 2 ) * s ,
co [ 1 ] * s , cofac ( 0 , 0 , 2 , 2 ) * s , cofac ( 0 , 2 , 1 , 0 ) * s ,
co [ 2 ] * s , cofac ( 0 , 1 , 2 , 0 ) * s , cofac ( 0 , 0 , 1 , 1 ) * s ) ;
}
void Basis : : orthonormalize ( ) {
// Gram-Schmidt Process
Vector3 x = get_axis ( 0 ) ;
Vector3 y = get_axis ( 1 ) ;
Vector3 z = get_axis ( 2 ) ;
x . normalize ( ) ;
y = ( y - x * ( x . dot ( y ) ) ) ;
y . normalize ( ) ;
z = ( z - x * ( x . dot ( z ) ) - y * ( y . dot ( z ) ) ) ;
z . normalize ( ) ;
set_axis ( 0 , x ) ;
set_axis ( 1 , y ) ;
set_axis ( 2 , z ) ;
}
Basis Basis : : orthonormalized ( ) const {
Basis c = * this ;
c . orthonormalize ( ) ;
return c ;
}
bool Basis : : is_orthogonal ( ) const {
Basis identity ;
Basis m = ( * this ) * transposed ( ) ;
return m . is_equal_approx ( identity ) ;
}
bool Basis : : is_diagonal ( ) const {
return (
Math : : is_zero_approx ( elements [ 0 ] [ 1 ] ) & & Math : : is_zero_approx ( elements [ 0 ] [ 2 ] ) & &
Math : : is_zero_approx ( elements [ 1 ] [ 0 ] ) & & Math : : is_zero_approx ( elements [ 1 ] [ 2 ] ) & &
Math : : is_zero_approx ( elements [ 2 ] [ 0 ] ) & & Math : : is_zero_approx ( elements [ 2 ] [ 1 ] ) ) ;
}
bool Basis : : is_rotation ( ) const {
return Math : : is_equal_approx ( determinant ( ) , 1 , ( real_t ) UNIT_EPSILON ) & & is_orthogonal ( ) ;
}
bool Basis : : is_symmetric ( ) const {
if ( ! Math : : is_equal_approx_ratio ( elements [ 0 ] [ 1 ] , elements [ 1 ] [ 0 ] , ( real_t ) UNIT_EPSILON ) ) {
return false ;
}
if ( ! Math : : is_equal_approx_ratio ( elements [ 0 ] [ 2 ] , elements [ 2 ] [ 0 ] , ( real_t ) UNIT_EPSILON ) ) {
return false ;
}
if ( ! Math : : is_equal_approx_ratio ( elements [ 1 ] [ 2 ] , elements [ 2 ] [ 1 ] , ( real_t ) UNIT_EPSILON ) ) {
return false ;
}
return true ;
}
Basis Basis : : diagonalize ( ) {
//NOTE: only implemented for symmetric matrices
//with the Jacobi iterative method method
# ifdef MATH_CHECKS
ERR_FAIL_COND_V ( ! is_symmetric ( ) , Basis ( ) ) ;
# endif
const int ite_max = 1024 ;
real_t off_matrix_norm_2 = elements [ 0 ] [ 1 ] * elements [ 0 ] [ 1 ] + elements [ 0 ] [ 2 ] * elements [ 0 ] [ 2 ] + elements [ 1 ] [ 2 ] * elements [ 1 ] [ 2 ] ;
int ite = 0 ;
Basis acc_rot ;
while ( off_matrix_norm_2 > ( real_t ) CMP_EPSILON2 & & ite + + < ite_max ) {
real_t el01_2 = elements [ 0 ] [ 1 ] * elements [ 0 ] [ 1 ] ;
real_t el02_2 = elements [ 0 ] [ 2 ] * elements [ 0 ] [ 2 ] ;
real_t el12_2 = elements [ 1 ] [ 2 ] * elements [ 1 ] [ 2 ] ;
// Find the pivot element
int i , j ;
if ( el01_2 > el02_2 ) {
if ( el12_2 > el01_2 ) {
i = 1 ;
j = 2 ;
} else {
i = 0 ;
j = 1 ;
}
} else {
if ( el12_2 > el02_2 ) {
i = 1 ;
j = 2 ;
} else {
i = 0 ;
j = 2 ;
}
}
// Compute the rotation angle
real_t angle ;
if ( Math : : is_equal_approx ( elements [ j ] [ j ] , elements [ i ] [ i ] ) ) {
angle = Math_PI / 4 ;
} else {
angle = 0.5f * Math : : atan ( 2 * elements [ i ] [ j ] / ( elements [ j ] [ j ] - elements [ i ] [ i ] ) ) ;
}
// Compute the rotation matrix
Basis rot ;
rot . elements [ i ] [ i ] = rot . elements [ j ] [ j ] = Math : : cos ( angle ) ;
rot . elements [ i ] [ j ] = - ( rot . elements [ j ] [ i ] = Math : : sin ( angle ) ) ;
// Update the off matrix norm
off_matrix_norm_2 - = elements [ i ] [ j ] * elements [ i ] [ j ] ;
// Apply the rotation
* this = rot * * this * rot . transposed ( ) ;
acc_rot = rot * acc_rot ;
}
return acc_rot ;
}
Basis Basis : : inverse ( ) const {
Basis inv = * this ;
inv . invert ( ) ;
return inv ;
}
void Basis : : transpose ( ) {
SWAP ( elements [ 0 ] [ 1 ] , elements [ 1 ] [ 0 ] ) ;
SWAP ( elements [ 0 ] [ 2 ] , elements [ 2 ] [ 0 ] ) ;
SWAP ( elements [ 1 ] [ 2 ] , elements [ 2 ] [ 1 ] ) ;
}
Basis Basis : : transposed ( ) const {
Basis tr = * this ;
tr . transpose ( ) ;
return tr ;
}
// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis : : scale ( const Vector3 & p_scale ) {
elements [ 0 ] [ 0 ] * = p_scale . x ;
elements [ 0 ] [ 1 ] * = p_scale . x ;
elements [ 0 ] [ 2 ] * = p_scale . x ;
elements [ 1 ] [ 0 ] * = p_scale . y ;
elements [ 1 ] [ 1 ] * = p_scale . y ;
elements [ 1 ] [ 2 ] * = p_scale . y ;
elements [ 2 ] [ 0 ] * = p_scale . z ;
elements [ 2 ] [ 1 ] * = p_scale . z ;
elements [ 2 ] [ 2 ] * = p_scale . z ;
}
Basis Basis : : scaled ( const Vector3 & p_scale ) const {
Basis m = * this ;
m . scale ( p_scale ) ;
return m ;
}
void Basis : : scale_local ( const Vector3 & p_scale ) {
// performs a scaling in object-local coordinate system:
// M -> (M.S.Minv).M = M.S.
* this = scaled_local ( p_scale ) ;
}
Basis Basis : : scaled_local ( const Vector3 & p_scale ) const {
Basis b ;
b . set_diagonal ( p_scale ) ;
return ( * this ) * b ;
}
Vector3 Basis : : get_scale_abs ( ) const {
return Vector3 (
Vector3 ( elements [ 0 ] [ 0 ] , elements [ 1 ] [ 0 ] , elements [ 2 ] [ 0 ] ) . length ( ) ,
Vector3 ( elements [ 0 ] [ 1 ] , elements [ 1 ] [ 1 ] , elements [ 2 ] [ 1 ] ) . length ( ) ,
Vector3 ( elements [ 0 ] [ 2 ] , elements [ 1 ] [ 2 ] , elements [ 2 ] [ 2 ] ) . length ( ) ) ;
}
Vector3 Basis : : get_scale_local ( ) const {
real_t det_sign = SGN ( determinant ( ) ) ;
return det_sign * Vector3 ( elements [ 0 ] . length ( ) , elements [ 1 ] . length ( ) , elements [ 2 ] . length ( ) ) ;
}
// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
Vector3 Basis : : get_scale ( ) const {
// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
//
// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
// Therefore, we are going to do this decomposition by sticking to a particular convention.
// This may lead to confusion for some users though.
//
// The convention we use here is to absorb the sign flip into the scaling matrix.
// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
//
// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
// matrix elements.
//
// The rotation part of this decomposition is returned by get_rotation* functions.
real_t det_sign = SGN ( determinant ( ) ) ;
return det_sign * get_scale_abs ( ) ;
}
// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
Vector3 Basis : : rotref_posscale_decomposition ( Basis & rotref ) const {
# ifdef MATH_CHECKS
ERR_FAIL_COND_V ( determinant ( ) = = 0 , Vector3 ( ) ) ;
Basis m = transposed ( ) * ( * this ) ;
ERR_FAIL_COND_V ( ! m . is_diagonal ( ) , Vector3 ( ) ) ;
# endif
Vector3 scale = get_scale ( ) ;
Basis inv_scale = Basis ( ) . scaled ( scale . inverse ( ) ) ; // this will also absorb the sign of scale
rotref = ( * this ) * inv_scale ;
# ifdef MATH_CHECKS
ERR_FAIL_COND_V ( ! rotref . is_orthogonal ( ) , Vector3 ( ) ) ;
# endif
return scale . abs ( ) ;
}
// Multiplies the matrix from left by the rotation matrix: M -> R.M
// Note that this does *not* rotate the matrix itself.
//
// The main use of Basis is as Transform.basis, which is used a the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
Basis Basis : : rotated ( const Vector3 & p_axis , real_t p_phi ) const {
return Basis ( p_axis , p_phi ) * ( * this ) ;
}
void Basis : : rotate ( const Vector3 & p_axis , real_t p_phi ) {
* this = rotated ( p_axis , p_phi ) ;
}
void Basis : : rotate_local ( const Vector3 & p_axis , real_t p_phi ) {
// performs a rotation in object-local coordinate system:
// M -> (M.R.Minv).M = M.R.
* this = rotated_local ( p_axis , p_phi ) ;
}
Basis Basis : : rotated_local ( const Vector3 & p_axis , real_t p_phi ) const {
return ( * this ) * Basis ( p_axis , p_phi ) ;
}
Basis Basis : : rotated ( const Vector3 & p_euler ) const {
return Basis ( p_euler ) * ( * this ) ;
}
void Basis : : rotate ( const Vector3 & p_euler ) {
* this = rotated ( p_euler ) ;
}
2022-08-13 15:22:33 +02:00
Basis Basis : : rotated ( const Quaternion & p_quat ) const {
2022-03-15 13:29:32 +01:00
return Basis ( p_quat ) * ( * this ) ;
}
2022-08-13 15:22:33 +02:00
void Basis : : rotate ( const Quaternion & p_quat ) {
2022-03-15 13:29:32 +01:00
* this = rotated ( p_quat ) ;
}
Vector3 Basis : : get_rotation_euler ( ) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized ( ) ;
real_t det = m . determinant ( ) ;
if ( det < 0 ) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m . scale ( Vector3 ( - 1 , - 1 , - 1 ) ) ;
}
return m . get_euler ( ) ;
}
2022-08-13 15:22:33 +02:00
Quaternion Basis : : get_rotation_quat ( ) const {
2022-03-15 13:29:32 +01:00
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized ( ) ;
real_t det = m . determinant ( ) ;
if ( det < 0 ) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m . scale ( Vector3 ( - 1 , - 1 , - 1 ) ) ;
}
return m . get_quat ( ) ;
}
Backported from Godot 4: New and improved IK system for Skeleton3D
This PR and commit adds a new IK system for 3D with the Skeleton3D node
that adds several new IK solvers, as well as additional changes and functionality
for making bone manipulation in Godot easier.
This work was sponsored by GSoC 2020 and TwistedTwigleg
Full list of changes:
* Adds a SkeletonModification3D resource
* This resource is the base where all IK code is written and executed
* Adds a SkeletonModificationStack3D resource
* This node oversees the execution of the modifications and acts as a bridge of sorts for the modifications to the Skeleton3D node
* Adds SkeletonModification3D resources for LookAt, CCDIK, FABRIK, Jiggle, and TwoBoneIK
* Each modification is in it's own file
* Several changes to Skeletons, listed below:
* Added local_pose_override, which acts just like global_pose_override but keeps bone-child relationships intract
* So if you move a bone using local_pose_override, all of the bones that are children will also be moved. This is different than global_pose_override, which only affects the individual bone
* Internally bones keep track of their children. This removes the need of a processing list, makes it possible to update just a few select bones at a time, and makes it easier to traverse down the bone chain
* Additional functions added for converting from world transform to global poses, global poses to local poses, and all the same changes but backwards (local to global, global to world). This makes it much easier to work with bone transforms without needing to think too much about how to convert them.
* New signal added, bone_pose_changed, that can be used to tell if a specific bone changed its transform. Needed for BoneAttachment3D
* Added functions for getting the forward position of a bone
* BoneAttachment3D node refactored heavily
* BoneAttachment3D node is now completely standalone in its functionality.
* This makes the code easier and less interconnected, as well as allowing them to function properly without being direct children of Skeleton3D nodes
* BoneAttachment3D now can be set either using the index or the bone name.
* BoneAttachment3D nodes can now set the bone transform instead of just following it. This is disabled by default for compatibility
* BoneAttachment3D now shows a warning when not configured correctly
* Added rotate_to_align function in Basis
* Added class reference documentation for all changes
- TwistedTwigleg
https://github.com/godotengine/godot/commit/5ffed49907618e3c7e7e2bddddcc8449d0b090a6
Note: It still needs some work.
2022-08-10 01:01:38 +02:00
void Basis : : rotate_to_align ( Vector3 p_start_direction , Vector3 p_end_direction ) {
// Takes two vectors and rotates the basis from the first vector to the second vector.
// Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724
const Vector3 axis = p_start_direction . cross ( p_end_direction ) . normalized ( ) ;
if ( axis . length_squared ( ) ! = 0 ) {
real_t dot = p_start_direction . dot ( p_end_direction ) ;
dot = CLAMP ( dot , - 1.0 , 1.0 ) ;
const real_t angle_rads = Math : : acos ( dot ) ;
set_axis_angle ( axis , angle_rads ) ;
}
}
2022-03-15 13:29:32 +01:00
void Basis : : get_rotation_axis_angle ( Vector3 & p_axis , real_t & p_angle ) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized ( ) ;
real_t det = m . determinant ( ) ;
if ( det < 0 ) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m . scale ( Vector3 ( - 1 , - 1 , - 1 ) ) ;
}
m . get_axis_angle ( p_axis , p_angle ) ;
}
void Basis : : get_rotation_axis_angle_local ( Vector3 & p_axis , real_t & p_angle ) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = transposed ( ) ;
m . orthonormalize ( ) ;
real_t det = m . determinant ( ) ;
if ( det < 0 ) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m . scale ( Vector3 ( - 1 , - 1 , - 1 ) ) ;
}
m . get_axis_angle ( p_axis , p_angle ) ;
p_angle = - p_angle ;
}
// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
//
// The current implementation uses XYZ convention (Z is the first rotation),
// so euler.z is the angle of the (first) rotation around Z axis and so on,
//
// And thus, assuming the matrix is a rotation matrix, this function returns
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
// around the z-axis by a and so on.
Vector3 Basis : : get_euler_xyz ( ) const {
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler ;
real_t sy = elements [ 0 ] [ 2 ] ;
if ( sy < ( 1 - ( real_t ) CMP_EPSILON ) ) {
if ( sy > - ( 1 - ( real_t ) CMP_EPSILON ) ) {
// is this a pure Y rotation?
if ( elements [ 1 ] [ 0 ] = = 0 & & elements [ 0 ] [ 1 ] = = 0 & & elements [ 1 ] [ 2 ] = = 0 & & elements [ 2 ] [ 1 ] = = 0 & & elements [ 1 ] [ 1 ] = = 1 ) {
// return the simplest form (human friendlier in editor and scripts)
euler . x = 0 ;
euler . y = atan2 ( elements [ 0 ] [ 2 ] , elements [ 0 ] [ 0 ] ) ;
euler . z = 0 ;
} else {
euler . x = Math : : atan2 ( - elements [ 1 ] [ 2 ] , elements [ 2 ] [ 2 ] ) ;
euler . y = Math : : asin ( sy ) ;
euler . z = Math : : atan2 ( - elements [ 0 ] [ 1 ] , elements [ 0 ] [ 0 ] ) ;
}
} else {
euler . x = Math : : atan2 ( elements [ 2 ] [ 1 ] , elements [ 1 ] [ 1 ] ) ;
euler . y = - Math_PI / 2.0 ;
euler . z = 0.0 ;
}
} else {
euler . x = Math : : atan2 ( elements [ 2 ] [ 1 ] , elements [ 1 ] [ 1 ] ) ;
euler . y = Math_PI / 2.0 ;
euler . z = 0.0 ;
}
return euler ;
}
// set_euler_xyz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses XYZ convention (Z is the first rotation).
void Basis : : set_euler_xyz ( const Vector3 & p_euler ) {
real_t c , s ;
c = Math : : cos ( p_euler . x ) ;
s = Math : : sin ( p_euler . x ) ;
Basis xmat ( 1 , 0 , 0 , 0 , c , - s , 0 , s , c ) ;
c = Math : : cos ( p_euler . y ) ;
s = Math : : sin ( p_euler . y ) ;
Basis ymat ( c , 0 , s , 0 , 1 , 0 , - s , 0 , c ) ;
c = Math : : cos ( p_euler . z ) ;
s = Math : : sin ( p_euler . z ) ;
Basis zmat ( c , - s , 0 , s , c , 0 , 0 , 0 , 1 ) ;
//optimizer will optimize away all this anyway
* this = xmat * ( ymat * zmat ) ;
}
Vector3 Basis : : get_euler_xzy ( ) const {
// Euler angles in XZY convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy -sz cz*sy
// sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
// cy*sx*sz cz*sx cx*cy+sx*sz*sy
Vector3 euler ;
real_t sz = elements [ 0 ] [ 1 ] ;
if ( sz < ( 1 - ( real_t ) CMP_EPSILON ) ) {
if ( sz > - ( 1 - ( real_t ) CMP_EPSILON ) ) {
euler . x = Math : : atan2 ( elements [ 2 ] [ 1 ] , elements [ 1 ] [ 1 ] ) ;
euler . y = Math : : atan2 ( elements [ 0 ] [ 2 ] , elements [ 0 ] [ 0 ] ) ;
euler . z = Math : : asin ( - sz ) ;
} else {
// It's -1
euler . x = - Math : : atan2 ( elements [ 1 ] [ 2 ] , elements [ 2 ] [ 2 ] ) ;
euler . y = 0.0 ;
euler . z = Math_PI / 2.0 ;
}
} else {
// It's 1
euler . x = - Math : : atan2 ( elements [ 1 ] [ 2 ] , elements [ 2 ] [ 2 ] ) ;
euler . y = 0.0 ;
euler . z = - Math_PI / 2.0 ;
}
return euler ;
}
void Basis : : set_euler_xzy ( const Vector3 & p_euler ) {
real_t c , s ;
c = Math : : cos ( p_euler . x ) ;
s = Math : : sin ( p_euler . x ) ;
Basis xmat ( 1 , 0 , 0 , 0 , c , - s , 0 , s , c ) ;
c = Math : : cos ( p_euler . y ) ;
s = Math : : sin ( p_euler . y ) ;
Basis ymat ( c , 0 , s , 0 , 1 , 0 , - s , 0 , c ) ;
c = Math : : cos ( p_euler . z ) ;
s = Math : : sin ( p_euler . z ) ;
Basis zmat ( c , - s , 0 , s , c , 0 , 0 , 0 , 1 ) ;
* this = xmat * zmat * ymat ;
}
Vector3 Basis : : get_euler_yzx ( ) const {
// Euler angles in YZX convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
// sz cz*cx -cz*sx
// -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
Vector3 euler ;
real_t sz = elements [ 1 ] [ 0 ] ;
if ( sz < ( 1 - ( real_t ) CMP_EPSILON ) ) {
if ( sz > - ( 1 - ( real_t ) CMP_EPSILON ) ) {
euler . x = Math : : atan2 ( - elements [ 1 ] [ 2 ] , elements [ 1 ] [ 1 ] ) ;
euler . y = Math : : atan2 ( - elements [ 2 ] [ 0 ] , elements [ 0 ] [ 0 ] ) ;
euler . z = Math : : asin ( sz ) ;
} else {
// It's -1
euler . x = Math : : atan2 ( elements [ 2 ] [ 1 ] , elements [ 2 ] [ 2 ] ) ;
euler . y = 0.0 ;
euler . z = - Math_PI / 2.0 ;
}
} else {
// It's 1
euler . x = Math : : atan2 ( elements [ 2 ] [ 1 ] , elements [ 2 ] [ 2 ] ) ;
euler . y = 0.0 ;
euler . z = Math_PI / 2.0 ;
}
return euler ;
}
void Basis : : set_euler_yzx ( const Vector3 & p_euler ) {
real_t c , s ;
c = Math : : cos ( p_euler . x ) ;
s = Math : : sin ( p_euler . x ) ;
Basis xmat ( 1 , 0 , 0 , 0 , c , - s , 0 , s , c ) ;
c = Math : : cos ( p_euler . y ) ;
s = Math : : sin ( p_euler . y ) ;
Basis ymat ( c , 0 , s , 0 , 1 , 0 , - s , 0 , c ) ;
c = Math : : cos ( p_euler . z ) ;
s = Math : : sin ( p_euler . z ) ;
Basis zmat ( c , - s , 0 , s , c , 0 , 0 , 0 , 1 ) ;
* this = ymat * zmat * xmat ;
}
// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
// as the x, y, and z components of a Vector3 respectively.
Vector3 Basis : : get_euler_yxz ( ) const {
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
Vector3 euler ;
real_t m12 = elements [ 1 ] [ 2 ] ;
if ( m12 < ( 1 - ( real_t ) CMP_EPSILON ) ) {
if ( m12 > - ( 1 - ( real_t ) CMP_EPSILON ) ) {
// is this a pure X rotation?
if ( elements [ 1 ] [ 0 ] = = 0 & & elements [ 0 ] [ 1 ] = = 0 & & elements [ 0 ] [ 2 ] = = 0 & & elements [ 2 ] [ 0 ] = = 0 & & elements [ 0 ] [ 0 ] = = 1 ) {
// return the simplest form (human friendlier in editor and scripts)
euler . x = atan2 ( - m12 , elements [ 1 ] [ 1 ] ) ;
euler . y = 0 ;
euler . z = 0 ;
} else {
euler . x = asin ( - m12 ) ;
euler . y = atan2 ( elements [ 0 ] [ 2 ] , elements [ 2 ] [ 2 ] ) ;
euler . z = atan2 ( elements [ 1 ] [ 0 ] , elements [ 1 ] [ 1 ] ) ;
}
} else { // m12 == -1
euler . x = Math_PI * 0.5 ;
euler . y = atan2 ( elements [ 0 ] [ 1 ] , elements [ 0 ] [ 0 ] ) ;
euler . z = 0 ;
}
} else { // m12 == 1
euler . x = - Math_PI * 0.5 ;
euler . y = - atan2 ( elements [ 0 ] [ 1 ] , elements [ 0 ] [ 0 ] ) ;
euler . z = 0 ;
}
return euler ;
}
// set_euler_yxz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses YXZ convention (Z is the first rotation).
void Basis : : set_euler_yxz ( const Vector3 & p_euler ) {
real_t c , s ;
c = Math : : cos ( p_euler . x ) ;
s = Math : : sin ( p_euler . x ) ;
Basis xmat ( 1 , 0 , 0 , 0 , c , - s , 0 , s , c ) ;
c = Math : : cos ( p_euler . y ) ;
s = Math : : sin ( p_euler . y ) ;
Basis ymat ( c , 0 , s , 0 , 1 , 0 , - s , 0 , c ) ;
c = Math : : cos ( p_euler . z ) ;
s = Math : : sin ( p_euler . z ) ;
Basis zmat ( c , - s , 0 , s , c , 0 , 0 , 0 , 1 ) ;
//optimizer will optimize away all this anyway
* this = ymat * xmat * zmat ;
}
Vector3 Basis : : get_euler_zxy ( ) const {
// Euler angles in ZXY convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
// cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
// -cx*sy sx cx*cy
Vector3 euler ;
real_t sx = elements [ 2 ] [ 1 ] ;
if ( sx < ( 1 - ( real_t ) CMP_EPSILON ) ) {
if ( sx > - ( 1 - ( real_t ) CMP_EPSILON ) ) {
euler . x = Math : : asin ( sx ) ;
euler . y = Math : : atan2 ( - elements [ 2 ] [ 0 ] , elements [ 2 ] [ 2 ] ) ;
euler . z = Math : : atan2 ( - elements [ 0 ] [ 1 ] , elements [ 1 ] [ 1 ] ) ;
} else {
// It's -1
euler . x = - Math_PI / 2.0 ;
euler . y = Math : : atan2 ( elements [ 0 ] [ 2 ] , elements [ 0 ] [ 0 ] ) ;
euler . z = 0 ;
}
} else {
// It's 1
euler . x = Math_PI / 2.0 ;
euler . y = Math : : atan2 ( elements [ 0 ] [ 2 ] , elements [ 0 ] [ 0 ] ) ;
euler . z = 0 ;
}
return euler ;
}
void Basis : : set_euler_zxy ( const Vector3 & p_euler ) {
real_t c , s ;
c = Math : : cos ( p_euler . x ) ;
s = Math : : sin ( p_euler . x ) ;
Basis xmat ( 1 , 0 , 0 , 0 , c , - s , 0 , s , c ) ;
c = Math : : cos ( p_euler . y ) ;
s = Math : : sin ( p_euler . y ) ;
Basis ymat ( c , 0 , s , 0 , 1 , 0 , - s , 0 , c ) ;
c = Math : : cos ( p_euler . z ) ;
s = Math : : sin ( p_euler . z ) ;
Basis zmat ( c , - s , 0 , s , c , 0 , 0 , 0 , 1 ) ;
* this = zmat * xmat * ymat ;
}
Vector3 Basis : : get_euler_zyx ( ) const {
// Euler angles in ZYX convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
// cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
// -sy cy*sx cy*cx
Vector3 euler ;
real_t sy = elements [ 2 ] [ 0 ] ;
if ( sy < ( 1 - ( real_t ) CMP_EPSILON ) ) {
if ( sy > - ( 1 - ( real_t ) CMP_EPSILON ) ) {
euler . x = Math : : atan2 ( elements [ 2 ] [ 1 ] , elements [ 2 ] [ 2 ] ) ;
euler . y = Math : : asin ( - sy ) ;
euler . z = Math : : atan2 ( elements [ 1 ] [ 0 ] , elements [ 0 ] [ 0 ] ) ;
} else {
// It's -1
euler . x = 0 ;
euler . y = Math_PI / 2.0 ;
euler . z = - Math : : atan2 ( elements [ 0 ] [ 1 ] , elements [ 1 ] [ 1 ] ) ;
}
} else {
// It's 1
euler . x = 0 ;
euler . y = - Math_PI / 2.0 ;
euler . z = - Math : : atan2 ( elements [ 0 ] [ 1 ] , elements [ 1 ] [ 1 ] ) ;
}
return euler ;
}
void Basis : : set_euler_zyx ( const Vector3 & p_euler ) {
real_t c , s ;
c = Math : : cos ( p_euler . x ) ;
s = Math : : sin ( p_euler . x ) ;
Basis xmat ( 1 , 0 , 0 , 0 , c , - s , 0 , s , c ) ;
c = Math : : cos ( p_euler . y ) ;
s = Math : : sin ( p_euler . y ) ;
Basis ymat ( c , 0 , s , 0 , 1 , 0 , - s , 0 , c ) ;
c = Math : : cos ( p_euler . z ) ;
s = Math : : sin ( p_euler . z ) ;
Basis zmat ( c , - s , 0 , s , c , 0 , 0 , 0 , 1 ) ;
* this = zmat * ymat * xmat ;
}
bool Basis : : is_equal_approx ( const Basis & p_basis ) const {
return elements [ 0 ] . is_equal_approx ( p_basis . elements [ 0 ] ) & & elements [ 1 ] . is_equal_approx ( p_basis . elements [ 1 ] ) & & elements [ 2 ] . is_equal_approx ( p_basis . elements [ 2 ] ) ;
}
bool Basis : : is_equal_approx_ratio ( const Basis & a , const Basis & b , real_t p_epsilon ) const {
for ( int i = 0 ; i < 3 ; i + + ) {
for ( int j = 0 ; j < 3 ; j + + ) {
if ( ! Math : : is_equal_approx_ratio ( a . elements [ i ] [ j ] , b . elements [ i ] [ j ] , p_epsilon ) ) {
return false ;
}
}
}
return true ;
}
bool Basis : : operator = = ( const Basis & p_matrix ) const {
for ( int i = 0 ; i < 3 ; i + + ) {
for ( int j = 0 ; j < 3 ; j + + ) {
if ( elements [ i ] [ j ] ! = p_matrix . elements [ i ] [ j ] ) {
return false ;
}
}
}
return true ;
}
bool Basis : : operator ! = ( const Basis & p_matrix ) const {
return ( ! ( * this = = p_matrix ) ) ;
}
Basis : : operator String ( ) const {
String mtx ;
for ( int i = 0 ; i < 3 ; i + + ) {
for ( int j = 0 ; j < 3 ; j + + ) {
if ( i ! = 0 | | j ! = 0 ) {
mtx + = " , " ;
}
mtx + = rtos ( elements [ i ] [ j ] ) ;
}
}
return mtx ;
}
2022-08-13 15:22:33 +02:00
Quaternion Basis : : get_quat ( ) const {
2022-03-15 13:29:32 +01:00
# ifdef MATH_CHECKS
2022-08-13 15:22:33 +02:00
ERR_FAIL_COND_V_MSG ( ! is_rotation ( ) , Quaternion ( ) , " Basis must be normalized in order to be casted to a Quaternionernion. Use get_rotation_quat() or call orthonormalized() if the Basis contains linearly independent vectors. " ) ;
2022-03-15 13:29:32 +01:00
# endif
/* Allow getting a quaternion from an unnormalized transform */
Basis m = * this ;
real_t trace = m . elements [ 0 ] [ 0 ] + m . elements [ 1 ] [ 1 ] + m . elements [ 2 ] [ 2 ] ;
real_t temp [ 4 ] ;
if ( trace > 0 ) {
real_t s = Math : : sqrt ( trace + 1 ) ;
temp [ 3 ] = ( s * 0.5f ) ;
s = 0.5f / s ;
temp [ 0 ] = ( ( m . elements [ 2 ] [ 1 ] - m . elements [ 1 ] [ 2 ] ) * s ) ;
temp [ 1 ] = ( ( m . elements [ 0 ] [ 2 ] - m . elements [ 2 ] [ 0 ] ) * s ) ;
temp [ 2 ] = ( ( m . elements [ 1 ] [ 0 ] - m . elements [ 0 ] [ 1 ] ) * s ) ;
} else {
int i = m . elements [ 0 ] [ 0 ] < m . elements [ 1 ] [ 1 ]
? ( m . elements [ 1 ] [ 1 ] < m . elements [ 2 ] [ 2 ] ? 2 : 1 )
: ( m . elements [ 0 ] [ 0 ] < m . elements [ 2 ] [ 2 ] ? 2 : 0 ) ;
int j = ( i + 1 ) % 3 ;
int k = ( i + 2 ) % 3 ;
real_t s = Math : : sqrt ( m . elements [ i ] [ i ] - m . elements [ j ] [ j ] - m . elements [ k ] [ k ] + 1 ) ;
temp [ i ] = s * 0.5f ;
s = 0.5f / s ;
temp [ 3 ] = ( m . elements [ k ] [ j ] - m . elements [ j ] [ k ] ) * s ;
temp [ j ] = ( m . elements [ j ] [ i ] + m . elements [ i ] [ j ] ) * s ;
temp [ k ] = ( m . elements [ k ] [ i ] + m . elements [ i ] [ k ] ) * s ;
}
2022-08-13 15:22:33 +02:00
return Quaternion ( temp [ 0 ] , temp [ 1 ] , temp [ 2 ] , temp [ 3 ] ) ;
2022-03-15 13:29:32 +01:00
}
static const Basis _ortho_bases [ 24 ] = {
Basis ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ) ,
Basis ( 0 , - 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 ) ,
Basis ( - 1 , 0 , 0 , 0 , - 1 , 0 , 0 , 0 , 1 ) ,
Basis ( 0 , 1 , 0 , - 1 , 0 , 0 , 0 , 0 , 1 ) ,
Basis ( 1 , 0 , 0 , 0 , 0 , - 1 , 0 , 1 , 0 ) ,
Basis ( 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 ) ,
Basis ( - 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 ) ,
Basis ( 0 , 0 , - 1 , - 1 , 0 , 0 , 0 , 1 , 0 ) ,
Basis ( 1 , 0 , 0 , 0 , - 1 , 0 , 0 , 0 , - 1 ) ,
Basis ( 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , - 1 ) ,
Basis ( - 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , - 1 ) ,
Basis ( 0 , - 1 , 0 , - 1 , 0 , 0 , 0 , 0 , - 1 ) ,
Basis ( 1 , 0 , 0 , 0 , 0 , 1 , 0 , - 1 , 0 ) ,
Basis ( 0 , 0 , - 1 , 1 , 0 , 0 , 0 , - 1 , 0 ) ,
Basis ( - 1 , 0 , 0 , 0 , 0 , - 1 , 0 , - 1 , 0 ) ,
Basis ( 0 , 0 , 1 , - 1 , 0 , 0 , 0 , - 1 , 0 ) ,
Basis ( 0 , 0 , 1 , 0 , 1 , 0 , - 1 , 0 , 0 ) ,
Basis ( 0 , - 1 , 0 , 0 , 0 , 1 , - 1 , 0 , 0 ) ,
Basis ( 0 , 0 , - 1 , 0 , - 1 , 0 , - 1 , 0 , 0 ) ,
Basis ( 0 , 1 , 0 , 0 , 0 , - 1 , - 1 , 0 , 0 ) ,
Basis ( 0 , 0 , 1 , 0 , - 1 , 0 , 1 , 0 , 0 ) ,
Basis ( 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 ) ,
Basis ( 0 , 0 , - 1 , 0 , 1 , 0 , 1 , 0 , 0 ) ,
Basis ( 0 , - 1 , 0 , 0 , 0 , - 1 , 1 , 0 , 0 )
} ;
int Basis : : get_orthogonal_index ( ) const {
//could be sped up if i come up with a way
Basis orth = * this ;
for ( int i = 0 ; i < 3 ; i + + ) {
for ( int j = 0 ; j < 3 ; j + + ) {
real_t v = orth [ i ] [ j ] ;
if ( v > 0.5f ) {
v = 1 ;
} else if ( v < - 0.5f ) {
v = - 1 ;
} else {
v = 0 ;
}
orth [ i ] [ j ] = v ;
}
}
for ( int i = 0 ; i < 24 ; i + + ) {
if ( _ortho_bases [ i ] = = orth ) {
return i ;
}
}
return 0 ;
}
void Basis : : set_orthogonal_index ( int p_index ) {
//there only exist 24 orthogonal bases in r3
ERR_FAIL_INDEX ( p_index , 24 ) ;
* this = _ortho_bases [ p_index ] ;
}
void Basis : : get_axis_angle ( Vector3 & r_axis , real_t & r_angle ) const {
/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
# ifdef MATH_CHECKS
ERR_FAIL_COND ( ! is_rotation ( ) ) ;
# endif
*/
real_t angle , x , y , z ; // variables for result
2022-07-19 09:50:54 +02:00
real_t angle_epsilon = 0.1 ; // margin to distinguish between 0 and 180 degrees
2022-03-15 13:29:32 +01:00
2022-07-19 09:50:54 +02:00
if ( ( Math : : abs ( elements [ 1 ] [ 0 ] - elements [ 0 ] [ 1 ] ) < CMP_EPSILON ) & & ( Math : : abs ( elements [ 2 ] [ 0 ] - elements [ 0 ] [ 2 ] ) < CMP_EPSILON ) & & ( Math : : abs ( elements [ 2 ] [ 1 ] - elements [ 1 ] [ 2 ] ) < CMP_EPSILON ) ) {
2022-03-15 13:29:32 +01:00
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonaland zero in other terms
2022-07-19 09:50:54 +02:00
if ( ( Math : : abs ( elements [ 1 ] [ 0 ] + elements [ 0 ] [ 1 ] ) < angle_epsilon ) & & ( Math : : abs ( elements [ 2 ] [ 0 ] + elements [ 0 ] [ 2 ] ) < angle_epsilon ) & & ( Math : : abs ( elements [ 2 ] [ 1 ] + elements [ 1 ] [ 2 ] ) < angle_epsilon ) & & ( Math : : abs ( elements [ 0 ] [ 0 ] + elements [ 1 ] [ 1 ] + elements [ 2 ] [ 2 ] - 3 ) < angle_epsilon ) ) {
2022-03-15 13:29:32 +01:00
// this singularity is identity matrix so angle = 0
r_axis = Vector3 ( 0 , 1 , 0 ) ;
r_angle = 0 ;
return ;
}
// otherwise this singularity is angle = 180
angle = Math_PI ;
real_t xx = ( elements [ 0 ] [ 0 ] + 1 ) / 2 ;
real_t yy = ( elements [ 1 ] [ 1 ] + 1 ) / 2 ;
real_t zz = ( elements [ 2 ] [ 2 ] + 1 ) / 2 ;
real_t xy = ( elements [ 1 ] [ 0 ] + elements [ 0 ] [ 1 ] ) / 4 ;
real_t xz = ( elements [ 2 ] [ 0 ] + elements [ 0 ] [ 2 ] ) / 4 ;
real_t yz = ( elements [ 2 ] [ 1 ] + elements [ 1 ] [ 2 ] ) / 4 ;
if ( ( xx > yy ) & & ( xx > zz ) ) { // elements[0][0] is the largest diagonal term
2022-07-19 09:50:54 +02:00
if ( xx < CMP_EPSILON ) {
2022-03-15 13:29:32 +01:00
x = 0 ;
y = Math_SQRT12 ;
z = Math_SQRT12 ;
} else {
x = Math : : sqrt ( xx ) ;
y = xy / x ;
z = xz / x ;
}
} else if ( yy > zz ) { // elements[1][1] is the largest diagonal term
2022-07-19 09:50:54 +02:00
if ( yy < CMP_EPSILON ) {
2022-03-15 13:29:32 +01:00
x = Math_SQRT12 ;
y = 0 ;
z = Math_SQRT12 ;
} else {
y = Math : : sqrt ( yy ) ;
x = xy / y ;
z = yz / y ;
}
} else { // elements[2][2] is the largest diagonal term so base result on this
2022-07-19 09:50:54 +02:00
if ( zz < CMP_EPSILON ) {
2022-03-15 13:29:32 +01:00
x = Math_SQRT12 ;
y = Math_SQRT12 ;
z = 0 ;
} else {
z = Math : : sqrt ( zz ) ;
x = xz / z ;
y = yz / z ;
}
}
r_axis = Vector3 ( x , y , z ) ;
r_angle = angle ;
return ;
}
// as we have reached here there are no singularities so we can handle normally
real_t s = Math : : sqrt ( ( elements [ 1 ] [ 2 ] - elements [ 2 ] [ 1 ] ) * ( elements [ 1 ] [ 2 ] - elements [ 2 ] [ 1 ] ) + ( elements [ 2 ] [ 0 ] - elements [ 0 ] [ 2 ] ) * ( elements [ 2 ] [ 0 ] - elements [ 0 ] [ 2 ] ) + ( elements [ 0 ] [ 1 ] - elements [ 1 ] [ 0 ] ) * ( elements [ 0 ] [ 1 ] - elements [ 1 ] [ 0 ] ) ) ; // s=|axis||sin(angle)|, used to normalise
angle = Math : : acos ( ( elements [ 0 ] [ 0 ] + elements [ 1 ] [ 1 ] + elements [ 2 ] [ 2 ] - 1 ) / 2 ) ;
if ( angle < 0 ) {
s = - s ;
}
x = ( elements [ 2 ] [ 1 ] - elements [ 1 ] [ 2 ] ) / s ;
y = ( elements [ 0 ] [ 2 ] - elements [ 2 ] [ 0 ] ) / s ;
z = ( elements [ 1 ] [ 0 ] - elements [ 0 ] [ 1 ] ) / s ;
r_axis = Vector3 ( x , y , z ) ;
r_angle = angle ;
}
2022-08-13 15:22:33 +02:00
void Basis : : set_quat ( const Quaternion & p_quat ) {
2022-03-15 13:29:32 +01:00
real_t d = p_quat . length_squared ( ) ;
real_t s = 2 / d ;
real_t xs = p_quat . x * s , ys = p_quat . y * s , zs = p_quat . z * s ;
real_t wx = p_quat . w * xs , wy = p_quat . w * ys , wz = p_quat . w * zs ;
real_t xx = p_quat . x * xs , xy = p_quat . x * ys , xz = p_quat . x * zs ;
real_t yy = p_quat . y * ys , yz = p_quat . y * zs , zz = p_quat . z * zs ;
set ( 1 - ( yy + zz ) , xy - wz , xz + wy ,
xy + wz , 1 - ( xx + zz ) , yz - wx ,
xz - wy , yz + wx , 1 - ( xx + yy ) ) ;
}
void Basis : : set_axis_angle ( const Vector3 & p_axis , real_t p_phi ) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
# ifdef MATH_CHECKS
ERR_FAIL_COND_MSG ( ! p_axis . is_normalized ( ) , " The axis Vector3 must be normalized. " ) ;
# endif
Vector3 axis_sq ( p_axis . x * p_axis . x , p_axis . y * p_axis . y , p_axis . z * p_axis . z ) ;
real_t cosine = Math : : cos ( p_phi ) ;
elements [ 0 ] [ 0 ] = axis_sq . x + cosine * ( 1 - axis_sq . x ) ;
elements [ 1 ] [ 1 ] = axis_sq . y + cosine * ( 1 - axis_sq . y ) ;
elements [ 2 ] [ 2 ] = axis_sq . z + cosine * ( 1 - axis_sq . z ) ;
real_t sine = Math : : sin ( p_phi ) ;
real_t t = 1 - cosine ;
real_t xyzt = p_axis . x * p_axis . y * t ;
real_t zyxs = p_axis . z * sine ;
elements [ 0 ] [ 1 ] = xyzt - zyxs ;
elements [ 1 ] [ 0 ] = xyzt + zyxs ;
xyzt = p_axis . x * p_axis . z * t ;
zyxs = p_axis . y * sine ;
elements [ 0 ] [ 2 ] = xyzt + zyxs ;
elements [ 2 ] [ 0 ] = xyzt - zyxs ;
xyzt = p_axis . y * p_axis . z * t ;
zyxs = p_axis . x * sine ;
elements [ 1 ] [ 2 ] = xyzt - zyxs ;
elements [ 2 ] [ 1 ] = xyzt + zyxs ;
}
void Basis : : set_axis_angle_scale ( const Vector3 & p_axis , real_t p_phi , const Vector3 & p_scale ) {
set_diagonal ( p_scale ) ;
rotate ( p_axis , p_phi ) ;
}
void Basis : : set_euler_scale ( const Vector3 & p_euler , const Vector3 & p_scale ) {
set_diagonal ( p_scale ) ;
rotate ( p_euler ) ;
}
2022-08-13 15:22:33 +02:00
void Basis : : set_quat_scale ( const Quaternion & p_quat , const Vector3 & p_scale ) {
2022-03-15 13:29:32 +01:00
set_diagonal ( p_scale ) ;
rotate ( p_quat ) ;
}
void Basis : : set_diagonal ( const Vector3 & p_diag ) {
elements [ 0 ] [ 0 ] = p_diag . x ;
elements [ 0 ] [ 1 ] = 0 ;
elements [ 0 ] [ 2 ] = 0 ;
elements [ 1 ] [ 0 ] = 0 ;
elements [ 1 ] [ 1 ] = p_diag . y ;
elements [ 1 ] [ 2 ] = 0 ;
elements [ 2 ] [ 0 ] = 0 ;
elements [ 2 ] [ 1 ] = 0 ;
elements [ 2 ] [ 2 ] = p_diag . z ;
}
Basis Basis : : slerp ( const Basis & p_to , const real_t & p_weight ) const {
//consider scale
2022-08-13 15:22:33 +02:00
Quaternion from ( * this ) ;
Quaternion to ( p_to ) ;
2022-03-15 13:29:32 +01:00
Basis b ( from . slerp ( to , p_weight ) ) ;
b . elements [ 0 ] * = Math : : lerp ( elements [ 0 ] . length ( ) , p_to . elements [ 0 ] . length ( ) , p_weight ) ;
b . elements [ 1 ] * = Math : : lerp ( elements [ 1 ] . length ( ) , p_to . elements [ 1 ] . length ( ) , p_weight ) ;
b . elements [ 2 ] * = Math : : lerp ( elements [ 2 ] . length ( ) , p_to . elements [ 2 ] . length ( ) , p_weight ) ;
return b ;
}